
Deep Learning on Graphs

Yao Ma and Jiliang Tang

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Contents

Preface page x
Acknowledgements xiii

1 Deep Learning on Graphs: An Introduction 1
1.1 Introduction 1
1.2 Why Deep Learning on Graphs? 1
1.3 What Content is Covered? 3
1.4 Who Should Read the Book? 6
1.5 Feature Learning on Graphs: A Brief History 8

1.5.1 Feature Selection on Graphs 9
1.5.2 Representation Learning on Graphs 10

1.6 Conclusion 13
1.7 Further Reading 13

PART ONE FOUNDATIONS 15

2 Foundations of Graphs 17
2.1 Introduction 17
2.2 Graph Representations 18
2.3 Properties and Measures 19

2.3.1 Degree 19
2.3.2 Connectivity 21
2.3.3 Centrality 23

2.4 Spectral Graph Theory 26
2.4.1 Laplacian Matrix 26
2.4.2 The Eigenvalues and Eigenvectors of the

Laplacian Matrix 28
2.5 Graph Signal Processing 29

iii

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

iv Contents

2.5.1 Graph Fourier Transform 30
2.6 Complex Graphs 33

2.6.1 Heterogeneous Graphs 33
2.6.2 Bipartite Graphs 34
2.6.3 Multi-dimensional Graphs 34
2.6.4 Signed Graphs 36
2.6.5 Hypergraphs 37
2.6.6 Dynamic Graphs 37

2.7 Computational Tasks on Graphs 39
2.7.1 Node-focused Tasks 39
2.7.2 Graph-focused Tasks 41

2.8 Conclusion 42
2.9 Further Reading 42

3 Foundations of Deep Learning 43
3.1 Introduction 43
3.2 Feedforward Networks 44

3.2.1 The Architecture 46
3.2.2 Activation Functions 47
3.2.3 Output Layer and Loss Function 50

3.3 Convolutional Neural Networks 52
3.3.1 The Convolution Operation and Convolutional

Layer 52
3.3.2 Convolutional Layers in Practice 56
3.3.3 Non-linear Activation Layer 58
3.3.4 Pooling Layer 58
3.3.5 An Overall CNN Framework 58

3.4 Recurrent Neural Networks 59
3.4.1 The Architecture of Traditional RNNs 60
3.4.2 Long Short-Term Memory 61
3.4.3 Gated Recurrent Unit 63

3.5 Autoencoders 63
3.5.1 Undercomplete Autoencoders 65
3.5.2 Regularized Autoencoders 66

3.6 Training Deep Neural Networks 67
3.6.1 Training with Gradient Descent 67
3.6.2 Backpropagation 68
3.6.3 Preventing Overfitting 71

3.7 Conclusion 71
3.8 Further Reading 72

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Contents v

PART TWO METHODS 73

4 Graph Embedding 75
4.1 Introduction 75
4.2 Graph Embedding on Simple Graphs 77

4.2.1 Preserving Node Co-occurrence 77
4.2.2 Preserving Structural Role 86
4.2.3 Preserving Node Status 89
4.2.4 Preserving Community Structure 91

4.3 Graph Embedding on Complex Graphs 94
4.3.1 Heterogeneous Graph Embedding 94
4.3.2 Bipartite Graph Embedding 96
4.3.3 Multi-dimensional Graph Embedding 97
4.3.4 Signed Graph Embedding 99
4.3.5 Hypergraph Embedding 102
4.3.6 Dynamic Graph Embedding 104

4.4 Conclusion 105
4.5 Further Reading 106

5 Graph Neural Networks 107
5.1 Introduction 107
5.2 The General GNN Frameworks 109

5.2.1 A General Framework for Node-focused Tasks 109
5.2.2 A General Framework for Graph-focused Tasks 110

5.3 Graph Filters 112
5.3.1 Spectral-based Graph Filters 112
5.3.2 Spatial-based Graph Filters 122

5.4 Graph Pooling 128
5.4.1 Flat Graph Pooling 129
5.4.2 Hierarchical Graph Pooling 130

5.5 Parameter Learning for Graph Neural Networks 135
5.5.1 Parameter Learning for Node Classification 135
5.5.2 Parameter Learning for Graph Classification 136

5.6 Conclusion 136
5.7 Further Reading 137

6 Robust Graph Neural Networks 138
6.1 Introduction 138
6.2 Graph Adversarial Attacks 138

6.2.1 Taxonomy of Graph Adversarial Attacks 139
6.2.2 White-box Attack 141
6.2.3 Gray-box Attack 144

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

vi Contents

6.2.4 Black-box Attack 148
6.3 Graph Adversarial Defenses 151

6.3.1 Graph Adversarial Training 152
6.3.2 Graph Purification 154
6.3.3 Graph Attention 155
6.3.4 Graph Structure Learning 159

6.4 Conclusion 160
6.5 Further Reading 160

7 Scalable Graph Neural Networks 161
7.1 Introduction 161
7.2 Node-wise Sampling Methods 165
7.3 Layer-wise Sampling Methods 167
7.4 Subgraph-wise Sampling Methods 171
7.5 Conclusion 173
7.6 Further Reading 174

8 Graph Neural Networks on Complex Graphs 175
8.1 Introduction 175
8.2 Heterogeneous Graph Neural Networks 175
8.3 Bipartite Graph Neural Networks 177
8.4 Multi-dimensional Graph Neural Networks 178
8.5 Signed Graph Neural Networks 180
8.6 Hypergraph Neural Networks 183
8.7 Dynamic Graph Neural Networks 184
8.8 Conclusion 186
8.9 Further Reading 186

9 Beyond GNNs: More Deep Models on Graphs 187
9.1 Introduction 187
9.2 Autoencoders on Graphs 188
9.3 Recurrent Neural Networks on Graphs 190
9.4 Variational Autoencoders on Graphs 192

9.4.1 Variational Autoencoders for Node Represen-
tation Learning 194

9.4.2 Variational Autoencoders for Graph Generation 195
9.5 Generative Adversarial Networks on Graphs 198

9.5.1 Generative Adversarial Networks for Node
Representation Learning 199

9.5.2 Generative Adversarial Networks for Graph
Generation 200

9.6 Conclusion 202

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Contents vii

9.7 Further Reading 202

PART THREE APPLICATIONS 203

10 Graph Neural Networks in Natural Language Processing 205
10.1 Introduction 205
10.2 Semantic Role Labeling 206
10.3 Neural Machine Translation 209
10.4 Relation Extraction 209
10.5 Question Answering 211

10.5.1 The Multi-hop QA Task 211
10.5.2 Entity-GCN 212

10.6 Graph to Sequence Learning 214
10.7 Graph Neural Networks on Knowledge Graphs 216

10.7.1 Graph Filters for Knowledge Graphs 216
10.7.2 Transforming Knowledge Graphs to Simple

Graphs 217
10.7.3 Knowledge Graph Completion 218

10.8 Conclusion 219
10.9 Further Reading 219

11 Graph Neural Networks in Computer Vision 220
11.1 Introduction 220
11.2 Visual Question Answering 220

11.2.1 Images as Graphs 222
11.2.2 Images and Questions as Graphs 223

11.3 Skeleton-based Action Recognition 225
11.4 Image Classification 227

11.4.1 Zero-shot Image Classification 228
11.4.2 Few-shot Image Classification 229
11.4.3 Multi-label Image Classification 230

11.5 Point Cloud Learning 231
11.6 Conclusion 232
11.7 Further Reading 233

12 Graph Neural Networks in Data Mining 234
12.1 Introduction 234
12.2 Web Data Mining 234

12.2.1 Social Network Analysis 235
12.2.2 Recommender Systems 238

12.3 Urban Data Mining 242

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

viii Contents

12.3.1 Traffic Prediction 242
12.3.2 Air Quality Forecasting 244

12.4 Cybersecurity Data Mining 245
12.4.1 Malicious Account Detection 245
12.4.2 Fake News Detection 247

12.5 Conclusion 248
12.6 Further Reading 249

13 Graph Neural Networks in Biochemistry and Healthcare 250
13.1 Introduction 250
13.2 Drug Development and Discovery 250

13.2.1 Molecule Representation Learning 251
13.2.2 Protein Interface Prediction 252
13.2.3 Drug-Target Binding Affinity Prediction 254

13.3 Drug Similarity Integration 256
13.4 Polypharmacy Side Effect Prediction 257
13.5 Disease Prediction 260
13.6 Conclusion 262
13.7 Further Reading 262

PART FOUR ADVANCES 263

14 Advanced Topics in Graph Neural Networks 265
14.1 Introduction 265
14.2 Deeper Graph Neural Networks 266

14.2.1 Jumping Knowledge 268
14.2.2 DropEdge 268
14.2.3 PairNorm 268

14.3 Exploring Unlabeled Data via Self-supervised Learning 269
14.3.1 Node-focused Tasks 269
14.3.2 Graph-focused Tasks 272

14.4 Expressiveness of Graph Neural Networks 273
14.4.1 Weisfeiler-Lehman Test 274
14.4.2 Expressiveness 276

14.5 Conclusion 277
14.6 Further Reading 277

15 Advanced Applications in Graph Neural Networks 279
15.1 Introduction 279
15.2 Combinatorial Optimization on Graphs 279
15.3 Learning Program Representations 281

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Contents ix

15.4 Reasoning Interacting Dynamical Systems in Physics 283
15.5 Conclusion 284
15.6 Further Reading 284

Bibliography 287

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Preface

Graphs have been leveraged to denote data from various domains ranging
from social science, linguistics to chemistry, biology, and physics. Meanwhile,
numerous real-world applications can be treated as computational tasks on
graphs. For examples, air quality forecasting can be regarded as a node clas-
sification task, friends recommendation in social networks can be solved as a
link prediction task and protein interface prediction can be regarded as a graph
classification task. To better take advantage of modern machine learning mod-
els for these computational tasks, effectively representing graphs plays a key
role. There are two major ways to extract features to represent graphs includ-
ing feature engineering and representation learning. Feature engineering relies
on hand-engineered features, which is time-consuming and often not optimal
for given downstream tasks. While representation learning is to learn features
automatically, which requires minimal human efforts and is adaptive to given
downstream tasks. Thus, representation learning on graphs has been exten-
sively studied.

The field of graph representation learning has been greatly developed over
the past decades that can be roughly divided into three generations includ-
ing traditional graph embedding, modern graph embedding, and deep learn-
ing on graphs. As the first generation of graph representation learning, tra-
ditional graph embedding has been investigated under the context of classic
dimension reduction techniques on graphs such as IsoMap, LLE, and eigen-
map. Word2vec is to learn word representations from a large corpus of text
and the generated word representations have advanced many natural language
processing tasks. The successful extensions of word2vec to the graph domain
have started the second generation of representation learning on graphs, i.e.,
modern graph embedding. Given the huge success of deep learning techniques
in representation learning in the domains of images and text, efforts have been

x

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Preface xi

made to generalize them to graphs, which have opened a new chapter of graph
representation learning, i.e., deep learning on graphs.

More and more evidence has demonstrated that the third generation of graph
representation learning especially graph neural networks (GNNs) has tremen-
dously facilitated computational tasks on graphs including both node-focused
and graph-focused tasks. The revolutionary advances brought by GNNs have
also immensely contributed to the depth and breadth of the adoption of graph
representation learning in real-world applications. For the classical application
domains of graph representation learning such as recommender systems and
social network analysis, GNNs result in state-of-the-art performance and bring
them into new frontiers. Meanwhile, new application domains of GNNs have
been continuously emerging such as combinational optimization, physics, and
healthcare. These wide applications of GNNs enable diverse contributions and
perspectives from disparate disciplines and make this research field truly inter-
disciplinary.

Graph representation learning is a rapidly growing field. It has attracted sig-
nificant amounts of attention from different domains and consequently accu-
mulated a large body of literature. Thus, it is a propitious time to systematically
survey and summarize this field. This book is our diligent attempt to achieve
this goal by taking advantage of our teaching and research experience of many
years in this field. In particular, we aim to help researchers to acquire essential
knowledge of graph representation learning and its wide range of applications
and understand its advances and new frontiers.

An Overview of the Book. This book provides a comprehensive introduc-
tion to graph representation learning with a focus on deep learning on graphs
especially GNNs. It consists of four parts: Foundations, Methods, Applica-
tions, and Advances. The Foundations part introduces the necessary back-
ground and basic concepts of graphs and deep learning. Topics covered by
the Methods part include modern graph embedding, GNNs for both simple and
complex graphs, the robustness and scalability issues of GNNs, and deep graph
models beyond GNNs. Each of these topics is covered by a chapter with funda-
mental concepts and technical details on representative algorithms. The Appli-
cations part presents GNN applications in the most typical domains including
Natural Language Processing, Computer Vision, Data Mining, Biochemistry,
and Healthcare. One chapter is used to cover the most representative sub-fields
advanced by GNNs for each domain. New emerging methods and application
domains are discussed by the Advances part. For each chapter, further reading
is included at the end for readers who are interested in more advanced topics
and recent trends.

Target Audience. This book is designed to be as self-contained as possible

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

xii Preface

though the basic background of graph theory, calculus, linear algebra, prob-
ability, and statistics can help better understand its technical details. Thus, it
is suitable for a wide range of readers with diverse backgrounds and different
purposes of reading. This book can serve as both a learning tool and a reference
for students at the senior undergraduate or graduate levels who want to obtain
a comprehensive understanding of this research field. Researchers who wish
to pursue this research field can consider this book as a starting point. Project
managers and practitioners can learn from GNNs applications in the book on
how to adopt GNNs in their products and platforms. Researchers outside of
computer science can find an extensive set of examples from this book on how
to apply GNNs to different disciplines.

Yao Ma
Jiliang Tang

East Lansing, MI
August, 2020

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Acknowledgements

We start by acknowledging our families to whom this book is dedicated. This
book would not have been possible without their selfless support and encour-
agement.

Graph representation learning has grown tremendously in the past decade
from traditional graph embedding to modern graph embedding and graph neu-
ral networks. We have had the fortune to witness these three generations. This
evolution is impossible without pioneering research performed by numerous
researchers. Meanwhile, increasing efforts have been made to take advantage
of graph representation learning to advance applications from many domains.
Graph representation learning has become a truly interdisciplinary research
field. We would like to acknowledge all people contributing to this field. Their
efforts not only enable us to have a book on this field but also make it one of
the most popular topics in machine learning.

The idea of writing this book is strongly inspired by Huan Liu (Arizona State
University). He has been working on feature selection for decades. We began
the journey on graph representation learning by his ingenious suggestion on
feature selection on graphs in 2010. We would like to thank Charu Aggarwal
(IBM Research) and Shiyu Chang (University of California, Santa Barbara)
with whom we started the research of modern graph embedding in 2014. We
have worked in this field since 2010 and we got immense support from our
collaborators. In particular, we would like to express our tremendous grati-
tude to Salem Alelyani (King Khalid University), Yi Chang (Jilin University),
Ken Frank (Michigan State University), Huiji Gao (LinkedIn), Xia Hu (Texas
A&M University), Anil Jain (Michigan State University), Shuiwang Ji (Texas
A&M University), Jundong Li (University of Virginia), Zitao Liu (TAL Edu-
cation Group), Sinem Mollaoglu (Michigan State University), Shin-Han Shiu
(Michigan State University), Kai Shu (Illinois Institute of Technology), Pang-
Ning Tan (Michigan State University), Lei Tang (Lyft), Guanhua Tu (Michigan

xiii

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

xiv Acknowledgements

State University), Suhang Wang (Pennsylvania State University), Lingfei Wu
(JD.com), Yuying Xie (Michigan State University), Ming Yan(Michigan State
University), Dawei Yin (Baidu, Inc.), Mi Zhang (Michigan State University)
and Jiayu Zhou (Michigan State University).

We would like to thank the current and former members of the Data Sci-
ence and Engineering Laboratory at Michigan State University. They include
Meznah Almutairy, Norah Alfadhli, Aaron Brookhouse, Jamell Dacon, Daniel
K.O-Dankwa, Tyler Derr, Jiayuan Ding, Wenqi Fan, Haoyu Han, Jiangtao
Huang, Hamid Karimi, Wei Jin, Juanhui Li, Yaxin Li, Haochen Liu, Hua Liu,
Xiaorui Liu, Jie Ren, Namratha Shah, Harry Shomer, Yuxuan Wan, Wentao
Wang, Yiqi Wang, Xochitl Weiss, Hongzhi Wen, Xiaoyang Wang, Xin Wang,
Zhiwei Wang, Han Xu, and Xiangyu Zhao. They provided invaluable com-
ments and feedback for the early drafts of this book.

The computer science and engineering department at Michigan State Uni-
versity provided us a fantastic atmosphere for this book. Our research on graph
representation learning has been, in part, supported by National Science Foun-
dation, Army Research Office, NEC Labs America, Snap Inc., The Ford Motor
Company, JD.com, Criteo Labs, and TAL Education Group. In particular, Hec-
tor Munoz-Avila, Zhengchang Chen, Wei Ding, Purush S. Iyer, Balakrishnan
Prabhakaran, Neil Shah, Finbarr Sloane, Maria Zemankova, and Aidong Zhang
have been supportive of our research in graph representation learning. It was a
pleasure working with Cambridge University Press. We would like to acknowl-
edge Lauren Cowles, a senior editor of Mathematics and Computer Sciences
at Cambridge, for her support, and the helpful staff at Cambridge, Amy He and
Mark Fox, as well as Harshavardhanan Udhayakumar and his colleagues at SPi
Global for their efforts on the production of the book.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

1
Deep Learning on Graphs: An Introduction

1.1 Introduction

We start this chapter by answering a few questions about the book. First, we
discuss why we should pay attention to deep learning on graphs. In particular,
why do we represent real-world data as graphs, why do we want to bridge deep
learning with graphs, and what are challenges for deep learning on graphs?
Second, we introduce what content this book will cover. Specifically, which
topics we will discuss and how we organize these topics? Third, we provide
guidance about who should read this book. Especially what is our target au-
dience and how to read this book with different backgrounds and purposes of
reading? To better understand deep learning on graphs, we briefly review the
history under the more general context of feature learning on graphs.

1.2 Why Deep Learning on Graphs?

Since data from real-world applications have very diverse forms, from ma-
trix and tensor to sequence and time series, a natural question that arises is
why we attempt to represent data as graphs. There are two primary moti-
vations. First, graphs provide a universal representation of data. Data from
many systems across various areas can be explicitly denoted as graphs such
as social networks, transportation networks, protein-protein interaction net-
works, knowledge graphs, and brain networks. Meanwhile, as indicated by
Figure 1.1, numerous other types of data can be transformed into the form
of graphs (Xu, 2017). Second, a vast number of real-world problems can be
addressed as a small set of computational tasks on graphs. Inferring nodes’ at-
tributes, detecting anomalous nodes (e.g., spammers or terrorists), identifying
relevant genes to diseases, and suggesting medicines to patients can be sum-

1

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2 Deep Learning on Graphs: An Introduction

Raw	Data	

Pairwise

GraphsLossless

Lossy

Weighted	Pairwise

Directed	Pairwise

Simple	Graph

Tensor

Temporal	Pairwise

Matrix

Group

Sequential

Diffusion

Time	Series

Weighted	Graph

Directed	Graph

Temporal	Graph

Dynamic	Graph

Heterogeneous

Graph

Hyper	Graph

Higher-order	Graph

Figure 1.1 Representing real-world data as graphs. The figure is reproduced
from (Xu, 2017). Solid lines are utilized to denote lossless representations, while
dotted lines are used to indicate lossy representations. Note that we replace “net-
work” in the original figure with “graph” .

marized as the problem of node classification (Bhagat et al., 2011). Recom-
mendations, polypharmacy side effect prediction, drug-target interaction iden-
tification, and knowledge graph completion are essentially the problem of link
prediction (Liben-Nowell and Kleinberg, 2007).

Nodes on graphs are inherently connected that suggests nodes not indepen-
dent. However, traditional machine learning techniques often assume that data
is independent and identically distributed. Thus, they are not suitable to di-
rectly tackle the computational tasks on graphs. There are two main directions
to develop solutions. As shown in Figure 1.2, we will use node classification
as an illustrative example to discuss these two directions. One direction is to
build a new mechanism specific to graphs. The classification problem designed
for graphs is known as collective classification (Sen et al., 2008) as demon-
strated in Figure 1.2a. Different from traditional classification, for a node, col-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

1.3 What Content is Covered? 3

lective classification considers not only the mapping between its features and
its label but also the mapping for its neighborhood. The other direction is to
flatten a graph by constructing a set of features to denote its nodes where tra-
ditional classification techniques can be applied, as illustrated in Figure 1.2b.
This direction can take advantage of traditional machine learning techniques;
thus, it has become increasingly popular and dominant. The key to the suc-
cess of this direction is how to construct a set of features for nodes (or node
representations). Deep learning has been proven to be powerful in represen-
tation learning that has greatly advanced various domains such as computer
vision, speech recognition, and natural language processing. Therefore, bridg-
ing deep learning with graphs present unprecedented opportunities. However,
deep learning on graphs also faces immense challenges. First, traditional deep
learning has been designed for regular structured data such as images and se-
quences, while graphs are irregular where nodes in a graph are unordered and
can have distinct neighborhoods. Second, the structural information for regular
data is simple; while that for graphs is complicated especially given that there
are various types of complex graphs (as shown in Figure 1.1) and nodes and
edges can associate with rich side information; thus traditional deep learning
is not sufficient to capture such rich information. A new research field has been
cultivated – deep learning on graphs, embracing unprecedented opportunities
and immense challenges.

1.3 What Content is Covered?

The high-level organization of the book is demonstrated in Figure 1.3. The
book consists of four parts to best accommodate our readers with diverse
backgrounds and purposes of reading. Part ONE introduces basic concepts;
Part TWO discusses the most established methods; Part THREE presents the
most typical applications, and Part FOUR describes advances of methods and
applications that tend to be important and promising for future research. For
each chapter, we first motivate the content that will be covered, then present the
material with compelling examples and technical details; and finally, provide
more relevant content as further reading. Next, we briefly elaborate on each
chapter.

• Part ONE: Foundations. These chapters focus on the basics of graphs and
deep learning that will lay the foundations for deep learning on graphs. In
Chapter 2, we introduce the key concepts and properties of graphs, Graph
Fourier Transform, graph signal processing, and formally define various

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4 Deep Learning on Graphs: An Introduction

Collective

Classification

Graph

Output

(a) Collective classification

Node	

Features

Graph

Traditional	

Classification

Output

(b) Traditional classification with node
feature extraction

Figure 1.2 Two major directions to develop solutions for node classification on
graphs

types of complex graphs and computational tasks on graphs. In Chapter 3,
we discuss a variety of basic neural network models, key approaches to train
deep models, and practical techniques to prevent overfitting during training.

• Part TWO: Methods. These chapters cover the most established methods

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

1.3 What Content is Covered? 5

1.	Introduction

2.	Foundations	of	Graphs
Part	One:	Foundations

3.	Foundations	of	Deep	Learning

4.	Graph	Embedding
Part	Two:	Methods

5.	Graph	Neural	Networks

6.	Robust	Graph	Neural	Networks

7.	Scalable	Graph	Neural	Networks

8.	Graph	Neural	Networks	on	Complex	Graphs

9.	Beyond	GNNs:	More	Deep	Models	on	Graphs

10.	Graph	Neural	Networks	in	Natural	Language	Processing
Part	Three:	Applications	

11.	Graph	Neural	Networks	in	Computer	Vision

12.	Graph	Neural	Networks	in	Data	Mining	

13.	Graph	Neural	Networks	in	Biochemistry	and	Healthcare

14.	Advanced	Methods	in	Graph	Neural	Networks
Part	Four:	Advances

15.	Advanced	Applications	in	Graph	Neural	Networks

Figure 1.3 The high-level organization of the book

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6 Deep Learning on Graphs: An Introduction

of deep learning on graphs from the basic to advanced settings. In Chap-
ter 4, we introduce a general graph embedding framework from the infor-
mation preserving perspective, provide technical details on representative
algorithms to preserve numerous types of information on graphs and present
embedding approaches specifically designed for complex graphs. A typical
graph neural network (GNN) model consists of two important operations,
i.e., the graph filtering operation and the graph pooling operation. In Chap-
ter 5, we review the state of the art graph filtering and pooling operations
and discuss how to learn the parameters of GNNs for a given downstream
task. As the generalizations of traditional deep models to graphs, GNNs in-
herit the drawbacks of traditional deep models and are vulnerable to adver-
sarial attacks. In Chapter 6, we focus on concepts and definitions of graph
adversarial attacks and detail representative adversarial attack and defense
techniques. GNNs perform the recursive expansion of neighborhoods across
layers. The expansion of the neighborhood for a single node can rapidly in-
volve a large portion of the graph or even the whole graph. Hence, scala-
bility is a pressing issue for GNNs. We detail representative techniques to
scale GNNs in Chapter 7. In Chapter 8, we discuss GNN models that have
been designed for more complicated graphs. To enable deep learning tech-
niques to advance more tasks on graphs under wider settings, we introduce
numerous deep graph models beyond GNNs in Chapter 9.

• Part THREE: Applications. Graphs provide a universal representation for
real-world data; thus, methods of deep learning on graphs have been applied
to various fields. These chapters present the most typical applications of
GNNs, including Natural Language Processing in Chapter 10, Computer
Vision in Chapter 11, Data Mining in Chapter 12 and Biochemistry and
Healthcare in Chapter 13.

• Part FOUR: Advances. These chapters focus on recent advances in both
methods and applications. In Chapter 14, we introduce advanced methods
in GNNs such as expressiveness, depth, fairness, interpretability, and self-
supervised learning. We discuss more areas that GNNs have been applied
to, including Combinatorial Optimization, Physics, and Program Represen-
tation in Chapter 15.

1.4 Who Should Read the Book?

This book is easily accessible to readers with a computer science background.
Basic knowledge of calculus, linear algebra, probability, and statistics can help
understand its technical details in a better manner. This book has a wide range

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

1.4 Who Should Read the Book? 7

2 3

4

8

7 5

6

9

10 11
12

13
14

15

Figure 1.4 The guidance on how to read this book. Note that the number in the
circle indicates the corresponding chapter as shown in Figure 1.3.

of target audiences. One target audience is senior undergraduate and gradu-
ate students interested in data mining, machine learning, and social network
analysis. This book can be independently used for a graduate seminar course
on deep learning on graphs. It also can be utilized as a part of a course. For
example, Part TWO and Part FOUR can be considered as advanced topics in
courses of data mining, machine learning, and social network analysis, and
Part THREE can be used as advanced methods in solving traditional tasks

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

8 Deep Learning on Graphs: An Introduction

in computer vision, natural language processing, and healthcare. Practition-
ers and project managers, who want to learn the basics and tangible examples
of deep learning on graphs and adopt graph neural networks into their prod-
ucts and platforms, are also our target audience. Graph neural networks have
been applied to benefit numerous disciplines beyond computer science. Thus,
another target audience is researchers who do not have a computer science
background but want to use graph neural networks to advance their disciplines.

Readers with different backgrounds and purposes of reading should go through
the book differently. The suggested guidance on how to read this book is
demonstrated in Figure 1.4. If readers aim to understand graph neural net-
work methods on simple graphs (or Chapter 5), knowledge about foundations
of graphs and deep learning and graph embedding is necessary (or Chapters 2,
3 and 4). Suppose readers want to apply graph neural networks to advance
healthcare (or Chapter 13). In that case, they should first read prerequisite ma-
terials in foundations of graphs and deep learning, graph embedding and graph
neural networks on simple and complex graphs. (or Chapters 2, 3, 4, 5,
and 8). For Part THREE, we assume that the readers should have the necessary
background in the corresponding application field. Besides, readers should feel
free to skip some chapters if they have already been equipped with the corre-
sponding background. Suppose readers know the foundations of graphs and
deep learning. In that case, they should skip Chapters 2 and 3 and only read
Chapters 4 and 5 to understand GNNs on simple graphs.

1.5 Feature Learning on Graphs: A Brief History

As aforementioned, to take advantage of traditional machine learning for com-
putational tasks on graphs, it is desired to find vector node representations. As
shown in Figure 1.5, there are mainly two ways to achieve this goal: feature
engineering and feature learning. Feature engineering relies on hand-designed
features such as node degree statistics, while feature learning is to learn node
features automatically. On the one hand, we often do not have prior knowledge
about what features are essential, especially for a given downstream task; thus,
features from feature engineering could be suboptimal for the downstream
task. The process requires an immense amount of human efforts. On the other
hand, feature learning is to learn features automatically, and the downstream
task can guide the process. Consequently, the learned features are likely to
be suitable for the downstream task that often obtain better performance than
those via feature engineering. Meanwhile, the process requires minimal human
intervention and can be easily adapted to new tasks. Thus, feature learning on

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

1.5 Feature Learning on Graphs: A Brief History 9

Feature	
Engineering

Feature	
Learning

Feature	
Selection

Shallow
Models

Deep	
Models

Representation	
Learning

Node	Feature
Extraction

Figure 1.5 Node feature extraction

graphs has been extensively studied, and various types of feature learning tech-
niques have been proposed to meet different requirements and scenarios. We
roughly divide these techniques into feature selection on graphs that aims to
remove irrelevant and redundant node features and representation learning on
graphs that targets on generating a set of new node features. In this section,
we briefly review these two groups of techniques that provide a general and
historical context for readers to understand deep learning on graphs.

1.5.1 Feature Selection on Graphs

Real-world data is often high-dimensional, and there exist noisy, irrelevant,
and redundant features (or dimensions), particularly when considering a given

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

10 Deep Learning on Graphs: An Introduction

task. Feature selection aims to automatically select a small subset of features
that have minimal redundancy but maximal relevance to the target, such as the
class labels under the supervised setting. In many applications, the original fea-
tures are crucial for knowledge extraction and model interpretation. For exam-
ple, in genetic analysis for cancer study, in addition to differentiating cancerous
tissues, it is of greater importance to identify the genes (i.e., original features)
that induce cancerogenesis. In these demanding applications, feature selection
is particularly preferred since it maintains the original features, and their se-
mantics usually provide critical insights to the learning problem. Traditional
feature selection assumes that data instances are independent and identically
distributed (i.i.d.). However, data samples in many applications are embedded
in graphs that are inherently not i.i.d.. It has motivated the research area of
feature selection on graphs. Given a graph G = {V,E} whereV is the node set
and E is the edge set, we assume that each node is originally associated with a
set of d features F = { f1, f2, . . . , fd}. Feature selection on graphs aims to select
K features from F to denote each node where K ≪ d. The problem was first
investigated under the supervised setting in (Tang and Liu, 2012a; Gu and Han,
2011). A linear classifier is employed to map from the selected features to the
class labels, and a graph regularization term is introduced to capture structural
information for feature selection. In particular, the term aims to ensure that
connected nodes with the selected features can be mapped into similar labels.
Then, the problem was further studied under the unsupervised setting (Wei
et al., 2016, 2015; Tang and Liu, 2012b). In (Tang and Liu, 2012b), pseudo
labels are extracted from the structural information that serve as the supervi-
sion to guide the feature selection process. In (Wei et al., 2016), both the node
content and structural information are assumed to be generated from a set of
high-quality features that can be obtained by maximizing the likelihood of
the generation process. Later on, the problem has been extended from simple
graphs to complex graphs such as dynamic graphs (Li et al., 2016), multi-
dimensional graphs (Tang et al., 2013b), signed graphs (Cheng et al., 2017;
Huang et al., 2020) and attributed graphs (Li et al., 2019b).

1.5.2 Representation Learning on Graphs

Different from feature selection on graphs, representation learning on graphs is
to learn a set of new node features. It has been extensively studied for decades
and has been dramatically accelerated by deep learning. In this subsection, we
will give it a brief historical review from shallow models to deep models.

At the early stage, representation learning on graphs has been studied un-
der the context of spectral clustering (Shi and Malik, 2000; Ng et al., 2002),

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

1.5 Feature Learning on Graphs: A Brief History 11

graph-based dimension reduction (Belkin and Niyogi, 2003; Tenenbaum et al.,
2000; Roweis and Saul, 2000), and matrix factorization (Zhu et al., 2007; Tang
et al., 2013a; Koren et al., 2009). In spectral clustering (Shi and Malik, 2000;
Ng et al., 2002), data points are considered as nodes of a graph, and then clus-
tering is to partition the graph into communities of nodes. One key step for
spectral clustering is spectral embedding. It aims to embed nodes into a low-
dimensional space where traditional clustering algorithms such as k-means can
be applied to identify clusters. Techniques of graph-based dimension reduc-
tion can be directly applied to learn node representations. These approaches
typically build an affinity graph using a predefined distance (or similarity)
function based on the raw features of data samples. They aim to learn node
representations to preserve structural information of this affinity graph. For ex-
ample, IsoMap (Tenenbaum et al., 2000) is to preserve the global geometry
via geodesics, while LLE (Roweis and Saul, 2000) and eigenmap (Belkin and
Niyogi, 2003) are to preserve local neighborhoods in the affinity graph. The
methods mentioned above often need to perform eigendecomposition on the
affinity matrix (or adjacency matrix or Laplacian matrix). Thus, they are of-
ten computationally expensive. Matrix is one of the most popular approaches
to denote graphs such as adjacency matrix, incidence matrix, and Laplacian
matrix. As a result, matrix factorization can be naturally applied to learn node
representations. Suppose we use the adjacency matrix to denote a graph. In that
case, it aims to embed nodes into a low-dimensional space where the new node
representations can be utilized to reconstruct the adjacency matrix. A docu-
ment corpus can be denoted as a bipartite graph where documents and words
are nodes, and an edge exists between a word and a document if the word
appears in the document. LSI has employed truncated SVD to learn represen-
tations of documents and words (Deerwester et al., 1990). In recommender
systems, interactions between users and items can be captured as a bipartite
graph, and matrix factorization has been employed to learn representations of
users and items for recommendations (Koren et al., 2009). Matrix factoriza-
tion is also leveraged to learn node representations for node classification (Zhu
et al., 2007; Tang et al., 2016a), link prediction (Menon and Elkan, 2011; Tang
et al., 2013a) and community detection (Wang et al., 2011). A family of mod-
ern graph embedding algorithms we will introduce later can also be unified as
matrix factorization (Qiu et al., 2018b).

Word2vec is a technique to generate word embeddings (Mikolov et al.,
2013) . It takes a large corpus of text as input and produces a vector repre-
sentation for each unique word in the corpus. The huge success of Word2vec
in various natural language processing tasks has motivated increasing efforts
to apply Word2vec, especially the Skip-gram model to learn node representa-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

12 Deep Learning on Graphs: An Introduction

tions in the graph domain. DeepWalk (Perozzi et al., 2014) takes the first step
to achieve this goal. Specifically, nodes in a given graph are treated as words
of an artificial language, and sentences in this language are generated by ran-
dom walks. Then, it uses the Skip-gram model to learn node representations,
which preserves the node co-occurrence in these random walks. After that, a
large body of works have been developed in three major directions – (1) De-
veloping advanced methods to preserve node co-occurrence (Tang et al., 2015;
Grover and Leskovec, 2016; Cao et al., 2015); (2) Preserving other types of
information such as node’s structural role (Ribeiro et al., 2017), community
information (Wang et al., 2017c) and node status (Ma et al., 2017; Lai et al.,
2017; Gu et al., 2018); and (3) Designing frameworks for complex graphs such
as directed graphs (Ou et al., 2016), heterogeneous graphs (Chang et al., 2015;
Dong et al., 2017), bipartite graphs (Gao et al., 2018b), multi-dimensional
graphs (Ma et al., 2018d), signed graphs (Wang et al., 2017b), hyper graphs (Tu
et al., 2018), and dynamic graphs (Nguyen et al., 2018; Li et al., 2017a).

Given the power and the success of DNNs in representation learning, in-
creasing efforts have been made to generalize DNNs to graphs. These meth-
ods are known as graph neural networks (GNNs) that can be roughly divided
into spatial approaches and spectral approaches. Spatial approaches explicitly
leverage the graph structure, such as spatially close neighbors, and the first
spatial approach was introduced by (Scarselli et al., 2005). Spectral approaches
utilize the spectral view of graphs by taking advantage of Graph Fourier Trans-
form and the Inverse Graph Fourier Transform (Bruna et al., 2013). In the era
of deep learning, GNNs have been rapidly developed in the following aspects.

• A huge amount of new GNN models have been introduced including spec-
tral approaches (Bruna et al., 2013; Defferrard et al., 2016; Kipf and Welling,
2016a) and spatial approaches (Atwood and Towsley, 2016; Niepert et al.,
2016; Gilmer et al., 2017; Monti et al., 2017; Veličković et al., 2017; Hamil-
ton et al., 2017a).

• For graph-focused tasks such as graph classification, the representation of
the whole graph is desired. Thus, numerous pooling methods have been in-
troduced to obtain the graph representation from node representations (Li
et al., 2015; Ying et al., 2018c; Gao and Ji, 2019; Ma et al., 2019b).

• Traditional DNNs are vulnerable to adversarial attacks. GNNs inherit this
drawback. A variety of graph adversarial attacks have been studied (Zügner
et al., 2018; Zügner and Günnemann, 2019; Dai et al., 2018; Ma et al.,
2020a) and various defense techniques have been developed (Dai et al.,
2018; Zhu et al., 2019a; Tang et al., 2019; Jin et al., 2020b).

• As aforementioned, scalability is a pressing issue for GNNs. Many strategies

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

1.6 Conclusion 13

have been studied to allow GNNs scale to large graphs (Chen et al., 2018a,b;
Huang et al., 2018).

• GNN models have been designed to handle complex graphs such as het-
erogeneous graphs (Zhang et al., 2018b; Wang et al., 2019i; Chen et al.,
2019b), bipartite graphs (He et al., 2019), multi-dimensional graphs (Ma
et al., 2019c), signed graphs (Derr et al., 2018), hypergraphs (Feng et al.,
2019b; Yadati et al., 2019), and dynamic graphs (Pareja et al., 2019).

• Diverse deep architectures have been generalized to graphs such as autoen-
coder (Wang et al., 2016; Cao et al., 2016), variational eutoencoder (Kipf
and Welling, 2016b), recurrent neural networks (Tai et al., 2015; Liang et al.,
2016) and generative adversarial networks (Wang et al., 2018a).

• As graphs are a universal data representation, GNNs have been applied to
advance many fields such as natural language processing, computer vision,
data mining, and healthcare.

1.6 Conclusion

In this chapter, we discussed the opportunities and challenges when we bridge
deep learning with graphs that have motivated the focus of this book – deep
learning on graphs. The book will cover the essential topics of deep learning
on graphs that are organized into four parts to accommodate readers with di-
verse backgrounds and purposes of reading, including foundations, methods,
applications, and advances. This book can benefit a broader range of read-
ers, including senior undergraduate students, graduate students, practitioners,
project managers, and researchers from various disciplines. To provide more
context for readers, we give a brief historical review on the area of feature
learning on graphs.

1.7 Further Reading

In this chapter, we have briefly reviewed the history of feature selection on
graphs. If readers want to know more about feature selection, there are sev-
eral important books (Liu and Motoda, 2012, 2007) and comprehensive sur-
veys (Tang et al., 2014a). An open-source feature selection repository named
scikit-feature has been developed, consisting of most of the popular feature
selection algorithms (Li et al., 2017b). Though this is the first comprehensive
book on the topic of deep learning on graphs, there are books on the general

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

14 Deep Learning on Graphs: An Introduction

topics on deep learning (Goodfellow et al., 2016; Aggarwal, 2018), deep learn-
ing on speech recognition (Yu and Deng, 2016; Kamath et al., 2019), and deep
learning in natural language processing (Deng and Liu, 2018; Kamath et al.,
2019).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

PART ONE

FOUNDATIONS

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2
Foundations of Graphs

2.1 Introduction

Graphs, which describe pairwise relations between entities, are essential rep-
resentations for real-world data from many different domains, including social
science, linguistics, chemistry, biology, and physics. Graphs are widely utilized
in social science to indicate the relations between individuals. In chemistry,
chemical compounds are denoted as graphs with atoms as nodes and chemical
bonds as edges (Bonchev, 1991). In linguistics, graphs are utilized to capture
the syntax and compositional structures of sentences. For example, parsing
trees are leveraged to represent the syntactic structure of a sentence according
to some context-free grammar, while Abstract Meaning Representation (AMR)
encodes the meaning of a sentence as a rooted and directed graph (Banarescu
et al., 2013). Hence, research on graphs has attracted immense attention from
multiple disciplines. In this chapter, we first introduce basic concepts of graphs
and discuss the matrix representations of graphs, including adjacency matrix
and Laplacian matrix (Chung and Graham, 1997) and their fundamental prop-
erties. Then we introduce attributed graphs where each node is associated with
attributes and provide a new understanding of these graphs by regarding the at-
tributes as functions or signals on the graph (Shuman et al., 2013). We present
the concepts of graph Fourier analysis and graph signal processing, which lay
essential foundations for deep learning on graphs. Next, we describe various
complex graphs that are frequently utilized to capture complicated relations
among entities in real-world applications. Finally, we discuss representative
computational tasks on graphs that have been broadly served as downstream
tasks for deep learning on graphs.

17

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

18 Foundations of Graphs

2.2 Graph Representations

In this section, we introduce the definition of graphs. We focus on simple un-
weighted graphs and will discuss more complex graphs in the following sec-
tions.

Definition 2.1 (Graph) A graph can be denoted as G = {V,E}, where V =
{v1, . . . , vN} is a set of N = |V| nodes and E = {e1, . . . , eM} is a set of M edges.

Nodes are essential entities in a graph. In social graphs, users are viewed
as nodes, while in chemical compound graphs, chemical atoms are treated as
nodes. The size of a given graph G is defined by its number of nodes, i.e.,
N = |V|. The set of edges E describes the connections between nodes. An edge
e ∈ E connects two nodes v1

e and v2
e ; thus, the edge e can be also represented as

(v1
e , v

2
e). In directed graphs, the edge is directed from node v1

e to node v2
e . While

in undirected graphs, the order of the two nodes does not make a difference,
i.e., e = (v1

e , v
2
e) = (v2

e , v
1
e). Note that without specific mention, we limit our

discussion to undirected graphs in this chapter. The nodes v1
e and v2

e are incident
to the edge e. A node vi is adjacent to another node v j if and only if there exists
an edge between them. In social graphs, different relations such as friendship
can be viewed as edges between nodes, and chemical bonds are considered as
edges in chemical compound graphs (we regard all chemical bonds as edges
while ignoring their different types). A graph G = {V,E} can be equivalently
represented as an adjacency matrix, which describes the connectivity between
the nodes.

Definition 2.2 (Adjacency Matrix) For a given graph G = {V,E}, the corre-
sponding adjacency matrix is denoted as A ∈ {0, 1}N×N . The i, j-th entry of the
adjacency matrix A, indicated as Ai, j, represents the connectivity between two
nodes vi and v j. More specifically, Ai, j = 1 if vi is adjacent to v j, otherwise
Ai, j = 0.

In an undirected graph, a node vi is adjacent to v j, if and only if v j is adja-
cent to vi, thus Ai, j = A j,i holds for all vi and v j in the graph. Hence, for an
undirected graph, its corresponding adjacency matrix is symmetric.

Example 2.3 An illustrative graph with 5 nodes and 6 edges is shown in Fig-
ure 2.1. In this graph, the set of nodes is represented asV = {v1, v2, v3, v4, v5},
and the set of edges is E = {e1, e2, e3, e4, e5, e6}. Its adjacency matrix can be
denoted as follows:

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2.3 Properties and Measures 19

𝑣"

𝑣#
𝑣$

𝑣%

𝑣& 𝑒#

𝑒$

𝑒"

𝑒%

𝑒&

𝑒(

Figure 2.1 A graph with 5 nodes and 6 edges

A =

0 1 0 1 1
1 0 1 0 0
0 1 0 0 1
1 0 0 0 1
1 0 1 1 0

2.3 Properties and Measures

Graphs can have varied structures and properties. In this section, we discuss
basic properties and measures for graphs.

2.3.1 Degree

The degree of a node v in a graph G indicates the number of times that a node
is adjacent to other nodes. We have the following formal definition.

Definition 2.4 (Degree) In a graph G = {V,E}, the degree of a node vi ∈ V

is the number of nodes that are adjacent to vi.

d(vi) =
∑
v j∈V

1E({vi, v j}),

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

20 Foundations of Graphs

where 1E(·) is an indicator function:

1E({vi, v j}) =
{

1 if (vi, v j) ∈ E,
0 if (vi, v j) < E.

The degree of a node vi inG can also be calculated from its adjacency matrix.
More specifically, for a node vi, its degree can be computed as:

d(vi) =
N∑

j=1

Ai, j. (2.1)

Example 2.5 In the graph shown in Figure 2.1, the degree of node v5 is 3,
as it is adjacent to 3 other nodes (i.e., v1, v3 and v4). Furthermore, the 5-th row
of the adjacency matrix has 3 non-zero elements, which also indicates that the
degree of v5 is 3.

Definition 2.6 (Neighbors) For a node vi in a graph G = {V,E}, the set of its
neighbors N(vi) consists of all nodes that are adjacent to vi.

Note that for a node vi, the number of nodes in N(vi) equals to its degree,
i.e., d(vi) = |N(vi)|.

Theorem 2.7 For a graph G = {V,E}, its total degree, i.e., the summation of
the degree of all nodes, is twice the number of edges in the graph.∑

vi∈V

d(vi) = 2 · |E|.

Proof ∑
vi∈V

d(vi) =
∑
vi∈V

∑
v j∈V

1E({vi, v j})

=
∑
{vi,v j}∈E

2 · 1E({vi, v j})

= 2 ·
∑
{vi,v j}∈E

1E({vi, v j})

= 2 · |E|

□

Corollary 2.8 The number of non-zero elements in the adjacency matrix is
also twice the number of the edges.

Proof The proof follows Theorem 2.7 by using Eq. (2.1). □

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2.3 Properties and Measures 21

Example 2.9 For the graph shown in Figure 2.1, the number of edges is 6.
The total degree is 12 and the number of non-zero elements in its adjacent
matrix is also 12.

2.3.2 Connectivity

Connectivity is an important property of graphs. Before discussing connectiv-
ity in graphs, we first introduce some basic concepts such as walk and path.

Definition 2.10 (Walk) A walk on a graph is an alternating sequence of nodes
and edges, starting with a node and ending with a node where each edge is
incident with the nodes immediately preceding and following it.

A walk starting at node u and ending at node v is called a u-v walk. The
length of a walk is the number of edges in this walk. Note that u-v walks are
not unique since there exist various u-v walks with different lengths.

Definition 2.11 (Trail) A trail is a walk whose edges are distinct.

Definition 2.12 (Path) A path is a walk whose nodes are distinct.

Example 2.13 In the graph shown in Figure 2.1, (v1, e4, v4, e5, v5, e6, v1, e1, v2)
is a v1-v2 walk of length 4. It is a trail but not a path as it visits node v1 twice.
Meanwhile, (v1, e1, v2, e2, v3) is a v1-v3 walk. It is a trail as well as a path.

Theorem 2.14 For a graph G = {E,V} with the adjacency matrix A, we use
An to denote the n-th power of the adjacency matrix. The i, j-th element of the
matrix An equals to the number of vi-v j walks of length n.

Proof We can prove this theorem by induction. For n = 1, according to the
definition of the adjacency matrix, when Ai, j = 1, there is an edge between
nodes vi and v j, which is regarded as a vi-v j walk of length 1. When Ai, j = 0,
there is no edge between vi and v j, thus there is no vi-v j walk of length 1.
Hence, the theorem holds for n = 1. Assume that the theorem holds when
n = k. In other words, the i, h-th element of Ak equals to the number of vi-
vh walks of length k. We then proceed to prove the case when n = k + 1.
Specifically, the i, j-th element of Ak+1 can be calculated by using Ak and A as

Ak+1
i, j =

N∑
h=1

Ak
i,h · Ah, j. (2.2)

For each h in Eq. (2.2), the term Ak
i,h ·Ah, j is non-zero only if both Ak

i,h and Ah, j

are non-zero. We have already known that Ak
i,h denotes the number of vi-vh

walks of length k while Ah, j indicates the number of the vh-v j walk of length 1.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

22 Foundations of Graphs

𝑣"

𝑣#
𝑣$

𝑣%

𝑣& 𝑒#

𝑒$

𝑒"

𝑒%

𝑒&

𝑒(
𝑣(

𝑣)
𝑣*

𝑒)
𝑒*

Figure 2.2 A graph with two connected components

Hence, the term Ak
i,h ·Ah, j counts the number of vi-v j walks of length k+1 with

vh as the second last node in the walk. Thus, when summing over all possible
nodes vh, the i, j-th element of Ak+1 equals to the number of vi-v j walks of
length k + 1, which completes the proof. □

Definition 2.15 (Subgraph) A subgraph G′ = {V′,E′} of a given graph G =
{V,E} is a graph formed with a subset of nodesV′ ⊂ V and a subset of edges
E′ ⊂ E. Furthermore, the subsetV′ must contain all the nodes involved in the
edges in the subset E′.

Example 2.16 For the graph shown in Figure 2.1, the subset of nodes V′ =
{v1, v2, v3, v5} and the subset of edges E′ = {e1, e2, e3, e6} form a subgraph of
the original graph G.

Definition 2.17 (Connected Component) Given a graph G = {V,E}, a sub-
graph G′ = {V′,E′} is said to be a connected component if there is at least one
path between any pair of nodes in the subgraph and the nodes in V′ are not
adjacent to any nodes inV/V′.

Example 2.18 A graph with two connected components is shown in Fig-
ure 2.2, where the left and right connected components are not connected to
each other.

Definition 2.19 (Connected Graph) A graph G = {V,E} is said to be con-
nected if it has exactly one component.

Example 2.20 The graph shown in Figure 2.1 is a connected graph, while
the graph in Figure 2.2 is not a connected graph.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2.3 Properties and Measures 23

Given a pair of nodes in a graph, there may exist multiple paths with different
lengths between them. For example, there are 3 paths from node v5 to node
v2 in the graph shown in Figure 2.1: (v5, e6, v1, e1, v2), (v5, e5, v4, e4, v1, e1, v2)
and (v5, e3, v3, e2, v2). Among them, (v5, e6, v1, e1, v2) and (v5, e3, v3, e2, v2) with
length 2 are the shortest paths from v5 to v2.

Definition 2.21 (Shortest Path) Given a pair of nodes vs, vt ∈ V in graph G,
we denote the set of paths from node vs to node vt as Pst. The shortest path
between node vs and node vt is defined as:

psp
st = arg min

p∈Pst
|p|,

where p denotes a path in Pst with |p| its length and psp
st indicates the shortest

path. Note that there could be more than one shortest path between any given
pair of nodes.

The shortest path between a pair of nodes describes important information
between them. A collective information of the shortest paths between any pairs
of nodes in a graph indicates important characteristics of the graph. Specifi-
cally, the diameter of a graph is defined as the length of the longest shortest
path in the graph.

Definition 2.22 (Diameter) Given a connected graphG = {V,E}, its diameter
is defined as follows:

diameter(G) = max
vs,vt∈V

min
p∈Pst

|p|.

Example 2.23 For the connected graph shown in Figure 2.1, its diameter is
2. One of the longest shortest paths are between node v2 and node v4 denoted
as (v2, e1, v1, e4, v4).

2.3.3 Centrality

In a graph, the centrality of a node measures the importance of the node in the
graph. There are different ways to measure node importance. In this section,
we introduce various definitions of centrality.

Degree Centrality
Intuitively, a node can be considered as important if there are many other nodes
connected to it. Hence, we can measure the centrality of a given node based
on its degree. In particular, for node vi, its degree centrality can be defined as

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

24 Foundations of Graphs

follows:

cd(vi) = d(vi) =
N∑

j=1

Ai, j.

Example 2.24 For the graph shown in Figure 2.1, the degree centrality for
nodes v1 and v5 is 3, while the degree centrality for nodes v2, v3 and v4 is 2.

Eigenvector Centrality
While the degree based centrality considers a node with many neighbors as im-
portant, it treats all the neighbors equally. However, the neighbors themselves
can have different importance; thus they could affect the importance of the cen-
tral node differently. The eigenvector centrality (Bonacich, 1972, 2007) defines
the centrality score of a given node vi by considering the centrality scores of
its neighboring nodes as:

ce(vi) =
1
λ

N∑
j=1

Ai, j · ce(v j),

which can be rewritten in a matrix form as:

ce =
1
λ

A · ce, (2.3)

where ce ∈ R
N is a vector containing the centrality scores of all nodes in the

graph. We can reform Eq. (2.3) as:

λ · ce = A · ce.

Clearly, ce is an eigenvector of the matrix A with its corresponding eigenvalue
λ. However, given an adjacency matrix A, there exist multiple pairs of eigen-
vectors and eigenvalues. Usually, we want the centrality scores to be positive.
Hence, we wish to choose an eigenvector with all positive elements. Accord-
ing to Perron–Frobenius theorem (Perron, 1907; Frobenius et al., 1912; Pillai
et al., 2005), a real squared matrix with positive elements has a unique largest
eigenvalue and its corresponding eigenvector has all positive elements. Thus,
we can choose λ as the largest eigenvalue and its corresponding eigenvector as
the centrality score vector.

Example 2.25 For the graph shown in Figure 2.1, its largest eigenvalue is
2.481 and its corresponding eigenvector is [1, 0.675, 0.675, 0.806, 1]. Hence,
the eigenvector centrality scores for the nodes v1, v2, v3, v4, v5 are 1, 0.675, 0.675,
0.806,and 1, respectively. Note that the degrees of nodes v2, v3 and v4 are 2;
however, the eigenvector centrality of node v4 is higher than that of the other

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2.3 Properties and Measures 25

two nodes as it directly connects to nodes v1 and v5 whose eigenvector central-
ity is high.

Katz Centrality
The Katz centrality is a variant of the eigenvector centrality, which not only
considers the centrality scores of the neighbors but also includes a small con-
stant for the central node itself. Specifically, the Katz centrality for a node vi

can be defined as:

ck(vi) = α
N∑

j=1

Ai, jck(v j) + β, (2.4)

where β is a constant. The Katz centrality scores for all nodes can be expressed
in the matrix form as:

ck = αAck + β

(I − α · A)ck = β (2.5)

where ck ∈ R
N denotes the Katz centrality score vector for all nodes while β

is the vector containing the constant term β for all nodes. Note that the Katz
centrality is equivalent to the eigenvector centrality if we set α = 1

λmax
and

β = 0, with λmax the largest eigenvalue of the adjacency matrix A. The choice
of α is important – a large α may make the matrix I − α · A ill-conditioned
while a small α may make the centrality scores useless since it will assign very
similar scores close to β to all nodes. In practice, α < 1

λmax
is often selected,

which ensures that the matrix I−α ·A is invertible and ck can be calculated as:

ck = (I − α · A)−1β.

Example 2.26 For the graph shown in Figure 2.1, if we set β = 1 and α = 1
5 ,

the Katz centrality score for nodes v1 and v5 is 2.16, for nodes v2 and v3 is 1.79
and for node v4 is 1.87.

Betweenness Centrality
The aforementioned centrality scores are based on connections to neighboring
nodes. Another way to measure the importance of a node is to check whether
it is at an important position in the graph. Specifically, if there are many paths
passing through a node, it is at an important position in the graph. Formally,
we define the betweenness centrality score for a node vi as:

cb(vi) =
∑

vs,vi,vt

σst(vi)
σst

, (2.6)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

26 Foundations of Graphs

where σst denotes the total number of shortest paths from node vs to node vt

while σst(vi) indicates the number of these paths passing through the node vi.
As suggested by Eq. (2.6), we need to compute the summation over all possible
pairs of nodes for the betweenness centrality score. Therefore, the magnitude
of the betweenness centrality score scales as the size of graph scales. Hence, to
make the betweenness centrality score comparable across different graphs, we
need to normalize it. One effective way is to divide the betweenness score by
the largest possible betweenness centrality score given a graph. In Eq. (2.6), the
maximum of the betweenness score can be reached when all the shortest paths
between any pair of nodes passing through the node vi. That is σst(vi)

σst
= 1, ∀vs ,

vi , vt. There are, in total, (N−1)(N−2)
2 pairs of nodes in an undirected graph.

Hence, the maximum betweenness centrality score is (N−1)(N−2)
2 . We then define

the normalized betweenness centrality score cnb(vi) for the node vi as:

cnb(vi) =
2

∑
vs,vi,vt

σst(vi)
σst

(N − 1)(N − 2)
,

Example 2.27 For the graph shown in Figure 2.1, the betweenness centrality
score for nodes v1 and v5 is 3

2 , and their normalized betweenness score is 1
4 .

The betweenness centrality score for nodes v2 and v3 is 1
2 , and their normalized

betweenness score is 1
12 . The betweenness centrality score for node v4 is 0 and

its normalized score is also 0.

2.4 Spectral Graph Theory

Spectral graph theory studies the properties of a graph through analyzing the
eigenvalues and eigenvectors of its Laplacian matrix. In this section, we in-
troduce the Laplacian matrix of a graph and then discuss its key properties,
eigenvalues, and eigenvectors.

2.4.1 Laplacian Matrix

In this subsection, we introduce the Laplacian matrix of a graph, which is an-
other matrix representation for graphs in addition to the adjacency matrix.

Definition 2.28 (Laplacian Matrix) For a given graph G = {V,E} with A as
its adjacency matrix, its Laplacian matrix is defined as:

L = D − A, (2.7)

where D is a diagonal degree matrix D = diag(d(v1), . . . , d(vN)).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2.4 Spectral Graph Theory 27

Another definition of the Laplacian matrix is a normalized version of Eq. (2.7).

Definition 2.29 (Normalized Laplacian Matrix) For a given graphG = {V,E}
with A as its adjacency matrix, its normalized Laplacian matrix is defined as:

L = D−
1
2 (D − A)D−

1
2 = I − D−

1
2 AD−

1
2 . (2.8)

Next, we focus on the discussion of the unnormalized Laplacian matrix as
defined in Definition 2.28. However, in some later chapters of this book, the
normalized Laplacian matrix will also be utilized. Unless specific mention, we
refer Laplacian matrix as the unnormalized one defined in Definition 2.28.

Note that the Laplacian matrix is symmetric as both the degree matrix D
and the adjacency matrix A are symmetric. Let f denote a vector where its i-th
element f[i] is associated with node vi. Multiplying L with f, we can get a new
vector h as:

h = Lf
= (D − A)f
= Df − Af.

The i-th element of h can be represented as:

h[i] = d(vi) · f[i] −
N∑

j=1

Ai, j · f[j]

= d(vi) · f[i] −
∑

v j∈N(vi)

Ai, j · f[j]

=
∑

v j∈N(vi)

(f[i] − f[j]). (2.9)

As informed by Eq. (2.9), h[i] is the summation of the differences between
node vi and its neighbors N(vi). We next calculate fT Lf as below:

fT Lf =
∑
vi∈V

f[i]
∑

v j∈N(vi)

(f[i] − f[j])

=
∑
vi∈V

∑
v j∈N(vi)

(f[i] · f[i] − f[i] · f[j])

=
∑
vi∈V

∑
v j∈N(vi)

(
1
2

f[i] · f[i] − f[i] · f[j] +
1
2

f[j] · f[j])

=
1
2

∑
vi∈V

∑
v j∈N(vi)

(f[i] − f[j])2. (2.10)

Thus, fT Lf is the sum of the squares of the differences between adjacent nodes.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

28 Foundations of Graphs

In other words, it measures how different the values of adjacent nodes are. It is
easy to verify that fT Lf is always non-negative for any possible choice of a real
vector f, which indicates that the Laplacian matrix is positive semi-definite.

2.4.2 The Eigenvalues and Eigenvectors of the Laplacian Matrix

In this subsection, we discuss main properties of eigenvalues and eigenvectors
of the Laplacian matrix.

Theorem 2.30 For a graph G = {V,E}, the eigenvalues of its Laplacian
matrix L are non-negative.

Proof Suppose that λ is an eigenvalue of the Laplacian matrix L and u is the
corresponding normalized eigenvector. According to the definition of eigenval-
ues and eigenvectors, we have λu = Lu. Note that u is a unit non-zero vector
and we have uT u = 1. Then,

λ = λuT u = uTλu = uT Lu ≥ 0

□

For a graph G with N nodes, there are, in total, N eigenvalues/eigenvectors
(with multiplicity). According to Theorem 2.30, all the eigenvalues are non-
negative. Furthermore, there always exists an eigenvalue that equals to 0. Let
us consider the vector u1 =

1
√

N
(1, . . . , 1). Using Eq. (2.9), we can easily verify

that Lu1 = 0 = 0u1, which indicates that u1 is an eigenvector corresponding
to the eigenvalue 0. For convenience, we arrange these eigenvalues in non-
decreasing order as 0 = λ1 ≤ λ2 ≤, . . . ,≤ λN . The corresponding normalized
eigenvectors are denoted as u1, . . . ,uN .

Theorem 2.31 Given a graph G, the number of 0 eigenvalues of its Lapla-
cian matrix L (the multiplicity of the 0 eigenvalue) equals to the number of
connected components in the graph.

Proof Suppose that there are K connected components in the graph G. We
can partition the set of nodes V into K disjoint subsets V1, . . . ,VK . We first
show that there exist at least K orthogonal eigenvectors corresponding to the
eigenvalue 0. Construct K vectors u1, . . . ,uK such that ui[j] = 1

√
|Vi |

if v j ∈ Vi

and 0 otherwise. We have that Lui = 0 for i = 1, . . . ,K, which indicates that
all the K vectors are the eigenvectors of L corresponding to eigenvalue 0. Fur-
thermore, it is easy to validate that uT

i u j = 0 if i , j, which means that these
K eigenvectors are orthogonal to each other. Hence, the multiplicity of the 0
eigenvalue is at least K. We next show that there are at most K orthogonal

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2.5 Graph Signal Processing 29

eigenvectors corresponding to the eigenvalue 0. Assume that there exists an-
other eigenvector u∗ corresponding to the eigenvalue 0, which is orthogonal
to all the K aforementioned eigenvectors. As u∗ is non-zero, there must ex-
ist an element in u∗ that is non-zero. Let us assume that the element is u∗[d]
associated with node vd ∈ Vi. Furthermore, according to Eq.(2.10), we have

u∗T Lu∗ =
1
2

∑
vi∈V

∑
v j∈N(vi)

(u∗[i] − u∗[j])2.

To ensure u∗T Lu∗ = 0, the values of nodes in the same component must be
the same. It indicates that all nodes in Vi have the same value u∗[d] as node
vd. Hence, uT

i u∗ > 0. It means u∗ is not orthogonal to ui, which leads to a
contradiction. Therefore, there is no more eigenvector corresponding to the
eigenvalue 0 beyond the K vectors we have constructed. □

2.5 Graph Signal Processing

In many real-world graphs, there are often features or attributes associated with
nodes. This kind of graph-structured data can be treated as graph signals, which
captures both the structure information (or connectivity between nodes) and
data (or attributes at nodes). A graph signal consists of a graph G = {V,E},
and a mapping function f defined in the graph domain, which maps the nodes
to real values. Mathematically, the mapping function can be represented as:

f : V → RN×d,

where d is the dimension of the value (vector) associated with each node. With-
out loss of generality, in this section, we set d = 1 and denote the mapped
values for all nodes as f ∈ RN with f[i] corresponding to node vi.

Example 2.32 A graph signal is shown in Figure 2.3, where the color of a
node represents its associated value with smaller values tending toward blue
and larger values tending toward red.

A graph is smooth if the values in connected nodes are similar. A smooth
graph signal is with low frequency, as the values change slowly across the
graph via the edges. The Laplacian matrix quadratic form in Eq. (2.10) can be
utilized to measure the smoothness (or the frequency) of a graph signal f as it
is the summation of the square of the difference between all pairs of connected
nodes. Specifically, when a graph signal f is smooth, fT Lf is small. The value
fT Lf is called as the smoothness (or the frequency) of the signal f.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

30 Foundations of Graphs

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 2.3 A one-dimensional graph signal

In the classical signal processing setting, a signal can be denoted in two do-
mains, i.e., the time domain and the frequency domain. Similarly, the graph
signal can also be represented in two domains, i.e., the spatial domain, which
we just introduced, and the spectral domain (or frequency domain). The spec-
tral domain of graph signals is based on the Graph Fourier Transform. It is
built upon the spectral graph theory that we have introduced in the previous
section.

2.5.1 Graph Fourier Transform

The classical Fourier Transform (Bracewell, n.d.)

f̂ (ξ) =< f (t), exp(−2πitξ) >=

∞∫
−∞

f (t) exp(−2πitξ)dt

decomposes a signal f (t) into a series of complex exponentials exp(−2πitξ)
for any real number ξ, where ξ can be viewed as the frequency of the corre-
sponding exponential. These exponentials are the eigenfunctions of the one-
dimensional Laplace operator (or the second order differential operator) as we

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2.5 Graph Signal Processing 31

have

∇(exp(−2πitξ)) =
∂2

∂t2 exp(−2πitξ)

=
∂

∂t
(−2πiξ) exp(−2πitξ)

= −(2πiξ)2 exp(−2πitξ).

Analogously, the Graph Fourier Transform for a graph signal f on graph G
can be represented as:

f̂[l] =< f,ul >=

N∑
i=1

f[i]ul[i], (2.11)

where ul is the l-th eigenvector of the Laplacian matrix L of the graph. The
corresponding eigenvalue λl represents the frequency or the smoothness of the
eigenvector ul. The vector f̂ with f̂[l] as its l-th element is the Graph Fourier
Transform of f. The eigenvectors are the graph Fourier basis of the graph G,
and f̂ consists of the graph Fourier coefficients corresponding to these basis for
a signal f. The Graph Fourier Transform of f can be also denoted in the matrix
form as:

f̂ = U⊤f (2.12)

where the l-th column of the matrix U is ul.
As suggested by the following equation:

u⊤l Lul = λl · u⊤l ul = λl,

the eigenvalue λl measures the smoothness of the corresponding eigenvector
ul. Specifically, the eigenvectors associated with small eigenvalues vary slowly
across the graph. In other words, the values of such eigenvector at connected
nodes are similar. Thus, these eigenvectors are smooth and change with low
frequency across the graph. However, the eigenvectors corresponding to large
eigenvalues may have very different values on two nodes, even if connected.
An extreme example is the first eigenvector u1 associated with the eigenvalue
0 – it is constant over all the nodes, which indicates that its value does not
change across the graph. Hence, it is extremely smooth and has an extremely
low frequency 0. These eigenvectors are the graph Fourier basis for the graph
G, and their corresponding eigenvalues indicate their frequencies. The Graph
Fourier Transform, as shown in Eq. (2.12) can be regarded as a process to
decompose an input signal f into graph Fourier basis with different frequencies.
The obtained coefficients f̂ denote how much the corresponding graph Fourier
basis contributes to the input signal.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

32 Foundations of Graphs

u
1

u
15

u
30

Graph Fourier Basis

-1

0

1

2

3

4

5

F
re

q
u
e
n
c
y

Figure 2.4 Frequencies of graph Fourier basis

Example 2.33 Figure 2.4 shows the frequencies of the graph Fourier basis of
the graph shown in Figure 2.3. Note that the frequency of u1 is 0.

The graph Fourier coefficients f̂ are the representation of the signal f in the
spectral domain. There is also the Inverse Graph Fourier Transform, which can
transform the spectral representation f̂ to the spatial representation f as:

f[i] =
N∑

l=1

f̂ [l]ul[i].

This process can also be represented in the matrix form as follows:

f = Uf̂.

In summary, a graph signal can be denoted in two domains, i.e., the spatial
domain and the spectral domain. The representations in the two domains can
be transformed to each other via the Graph Fourier Transform and the Inverse
Graph Fourier Transform, respectively.

Example 2.34 Figure 2.5 shows a graph signal in both the spatial and spectral
domains. Specifically, Figure 2.5a shows the graph signal in the spatial domain
and Figure 2.5b illustrates the same graph signal in the spectral domain. In
Figure 2.5b, the x-axis is the graph Fourier basis and the y-axis indicates the
corresponding graph Fourier coefficients.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2.6 Complex Graphs 33

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) A graph signal in the spatial domain

0 1 2 3 4 5

0.5

1

1.5

2

2.5

(b) A graph signal in the spectral domain

Figure 2.5 Representations of a graph signal in both spatial and spectral Domains

2.6 Complex Graphs

In the earlier sections, we introduced simple graphs and their fundamental
properties. However, graphs in real-world applications are much more compli-
cated. In this section, we briefly describe popular complex graphs with formal
definitions.

2.6.1 Heterogeneous Graphs

The simple graphs we have discussed are homogeneous. They only have one
type of nodes as well as a single type of edges. However, in many real-world
applications, we want to model multiple types of relations between multiple
types of nodes. As shown in Figure 2.6, in an academic network describing
publications and citations, there are three types of nodes, including authors,
papers, and venues. There are also various kinds of edges denoting different
relations between the nodes. For example, there exist edges describing the
citation relations between papers or edges denoting the authorship relations
between authors and papers. Next, we formally define heterogeneous graphs.

Definition 2.35 (Heterogeneous Graphs) A heterogeneous graph G consists
of a set of nodes V = {v1, . . . , vN} and a set of edges E = {e1, . . . , eM} where
each node and each edge are associated with a type. Let Tn denote the set
of node types and Te indicate the set of edge types. There are two mapping
functions ϕn : V → Tn and ϕe : E → Te that map each node and each edge to
their types, respectively.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

34 Foundations of Graphs

published_at

paper

cite

authored

conference

author

attend

Figure 2.6 A heterogeneous academic graph

2.6.2 Bipartite Graphs

In a bipartite graph G = {V,E}, its node set V can be divided into two dis-
joint subsets V1 and V2 where every edge in E connects a node in V1 to a
node in V2. Bipartite graphs are widely used to capture interactions between
different objects. For example, as shown in Figure 2.7, in many e-commerce
platforms such as Amazon, the click history of users can be modeled as a bi-
partite graph where the users and items are the two disjoint node sets, and
users’ click behaviors form the edges between them. Next, we formally define
bipartite graphs.

Definition 2.36 (Bipartite Graph) Given a graph G = {V,E}, it is bipartite if
and only if V = V1 ∪ V2, V1 ∩ V2 = ∅ and v1

e ∈ V1 while v2
e ∈ V2 for all

e = (v1
e , v

2
e) ∈ E.

2.6.3 Multi-dimensional Graphs

In many real-world graphs, multiple relations can simultaneously exist be-
tween a pair of nodes. One example of such graph can be found at the pop-
ular video-sharing site YouTube, where users are viewed as nodes. YouTube
users can subscribe to each other, which is considered as one relation. Users
can be connected via other relations such as “sharing” or “commenting” videos
from other users. Another example is from e-commerce sites such as Amazon,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2.6 Complex Graphs 35

Figure 2.7 An e-commerce bipartite graph

where users can interact with items through various types of behaviors such as
“click”, “purchase” and “comment”. These graphs with multiple relations can
be naturally modeled as multi-dimensional graphs by considering each type of
relations as one dimension.

Definition 2.37 (Multi-dimensional graph) A multi-dimensional graph con-
sists of a set of N nodes V = {v1, . . . , vN} and D sets of edges {E1, . . . ,ED}.
Each edge set Ed describes the d-th type of relations between the nodes in
the corresponding d-th dimension. These D types of relations can also be ex-
pressed by D adjacency matrices A(1), . . . ,A(D). In the dimension d, its cor-
responding adjacency matrix A(d) ∈ RN×N describes the edges Ed between
nodes in V. Specifically, the i, j-th element of A(d), denoted as A(d)

i, j , equals to
1 only when there is an edge between nodes vi and v j in the dimension d (or
(vi, v j) ∈ Ed), otherwise 0.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

36 Foundations of Graphs

unfriend

unfriend

friend

friend

friend

friend

Figure 2.8 An illustrative signed graph

2.6.4 Signed Graphs

Signed graphs, which contain both positive and negative edges, have become
increasingly ubiquitous with the growing popularity of the online social net-
works. Examples of signed graphs are from online social networks such as
Facebook and Twitter, where users can block or unfollow other users. The be-
haviour of “block” can be viewed as negative edges between users. Meanwhile,
the behaviour of “unfriend” can also be treated as negative edges. An illustra-
tive example of a signed graph is shown in Figure 2.8, where users are nodes
and “unfriend” and “friend” relations are the “negative” and “positive” edges,
respectively. Next, we give the formal definition of signed graphs.

Definition 2.38 (Signed Graphs) Let G = {V,E+,E−} be a signed graph,
where V = {v1, . . . , vN} is the set of N nodes while E+ ⊂ V × V and E− ⊂
V×V denote the sets of positive and negative edges, respectively. Note that an
edge can only be either positive or negative, i.e., E+ ∩ E− = ∅. These positive
and negative edges between nodes can also be described by a signed adjacency
matrix A, where Ai, j = 1 only when there is a positive edge between node vi

and node v j, Ai, j = −1 denotes a negative edge, otherwise Ai, j = 0.

2.6 Complex Graphs 37

Author 1

Author 2

Author 3

Figure 2.9 An illustrative hypergraph

2.6.5 Hypergraphs

The graphs we introduced so far only encode pairwise information via edges.
However, in many real-world applications, relations are beyond pairwise as-
sociations. Figure 2.9 demonstrates a hypergraph describing the relations be-
tween papers. An specific author can publish more than two papers. Thus, the
author can be viewed as a hyperedge connecting multiple papers (or nodes).
Compared with edges in simple graphs, hyperedges can encode higher-order
relations. The graphs with hyperedges are called as hypergraphs. Next, we give
the formal definition of hypergraphs.

Definition 2.39 (Hypergraphs) Let G = {V,E,W} be a hypergraph, where
V is a set of N nodes, E is a set of hyperedges and W ∈ R|E|×|E| is a diagonal
matrix with W j, j denoting the weight of the hyperedge e j. The hypergraph
G can be described by an incidence matrix H ∈ R|V|×|E|, where Hi, j = 1 only
when the node vi is incident to the edge e j. For a node vi, its degree is defined as

d(vi) =
|E|∑
j=1

Hi, j, while the degree for a hyperedge is defined as d(e j) =
|V|∑
i=1

Hi, j.

Furthermore, we use De and Dv to denote the diagonal matrices of the edge
and node degrees, respectively.

2.6.6 Dynamic Graphs

The graphs mentioned above are static, where the connections between nodes
are fixed when observed. However, in many real-world applications, graphs are
constantly evolving as new nodes are added to the graph, and new edges are

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

38 Foundations of Graphs

𝑡"𝑡#

𝑡$

𝑡%

𝑡&

𝑡'

𝑡(

𝑡)
𝑣$

𝑣%

𝑣& 𝑣'

𝑣(

𝑣)𝑣"
𝑣+

Figure 2.10 An illustrative example of dynamic graphs.

continuously emerging. For example, in online social networks such as Face-
book, users can constantly establish friendships with others, and new users can
also join Facebook at any time. These kinds of evolving graphs can be denoted
as dynamic graphs where each node or edge is associated with a timestamp.
An illustrative example of dynamic graphs is shown in Figure 2.10, where each
edge is associated with a timestamp, and the timestamp of a node is when the
very first edge involves the node. Next, we give a formal definition of dynamic
graphs.

Definition 2.40 (Dynamic Graphs) A dynamic graph G = {V,E}, consists
of a set of nodes V = {v1, . . . , vN} and a set of edges E = {e1, . . . , eM} where
each node and/or each edge is associated with a timestamp indicating the time
it emerged. Specifically, we have two mapping functions ϕv and ϕe mapping
each node and each edge to their emerging timestamps.

In reality, we may not be able to record the timestamp of each node and/or
each edge. Instead, we only check from time to time to observe how the graph
evolves. At each observation timestamp t, we can record the snapshot of the
graph Gt as the observation. We refer to this kind of dynamic graphs as dis-
crete dynamic graphs, which consist of multiple graph snapshots. We formally
define the discrete dynamic graph as follows.

Definition 2.41 (Discrete Dynamic Graphs) A discrete dynamic graph con-
sists of T graph snapshots, which are observed along with the evolution of a dy-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2.7 Computational Tasks on Graphs 39

namic graph. Specifically, the T graph snapshots can be denoted as {G0, . . . ,GT }

where G0 is the graph observed at time 0.

2.7 Computational Tasks on Graphs

There are a variety of computational tasks proposed for graphs. These tasks
can be mainly divided into two categories. One is node-focused tasks, where
the entire data is usually represented as one graph with nodes as the data sam-
ples. The other is graph-focused tasks, where data often consists of a set of
graphs, and each data sample is a graph. In this section, we briefly introduce
representative tasks for each group.

2.7.1 Node-focused Tasks

Numerous node-focused tasks have been extensively studied, such as node
classification, node ranking, link prediction, and community detection. Next,
we discuss two typical tasks, including node classification and link prediction.

Node classification
In many real-world graphs, nodes are associated with useful information, often
treated as labels of these nodes. For example, in social networks, such infor-
mation can be demographic properties of users such as age, gender, and occu-
pation, or users’ interests and hobbies. These labels usually help characterize
the nodes and can be leveraged for many important applications. For example,
in social media such as Facebook, labels related to interests and hobbies can
be utilized to recommend relevant items (i.e., news and events) to their users.
However, in reality, it is often difficult to get a full set of labels for all nodes.
For example, less than 1% of Facebook users provide their complete demo-
graphic properties. Hence, we are likely given a graph with only a part of the
nodes associated with labels, and we aim to infer the labels for nodes without
labels. It motivates the problem of node classification on graphs.

Definition 2.42 (Node classification) Let G = {V,E} denote a graph withV
the set of nodes and E the set of edges. Some of the nodes inV are associated
with labels, and the set of these labeled nodes is represented as Vl ⊂ V. The
remaining nodes do not have labels, and this set of unlabeled nodes is denoted
asVu. Specifically, we haveVl ∪ Vu = V andVl ∩ Vu = ∅. The goal of the
node classification task is to learn a mapping ϕ by leveraging G and labels of
Vl, which can predict the labels of unlabeled nodes (or v ∈ Vu).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

40 Foundations of Graphs

The above definition is for simple graphs that can be easily extended to
graphs with attributes and complex graphs we introduced in Section 2.6.

Example 2.43 (Node Classification in Flickr) Flickr is an image hosting plat-
form that allows users to host their photos. It also serves as an online social
community where users can follow each other. Hence, users in Flickr and their
connections form a graph. Furthermore, users in Flickr can subscribe to in-
terest groups such as “Black and White”, “The Fog and The Rain”, and “Dog
World”. These subscriptions indicate the interests of users and can be used as
their labels. A user can subscribe to multiple groups. Hence, each user can be
associated with multiple labels. A multi-label node classification problem on
graphs can help predict the potential groups that users are interested in, but they
have not yet subscribed to. One such dataset on Flickr can be found in (Tang
and Liu, 2009).

Link Prediction
In many real-world applications, graphs are not complete but with missing
edges. Some of the connections exist. However, they are not observed or recorded,
which leads to missing edges in the observed graphs. Meanwhile, many graphs
are naturally evolving. In social media such as Facebook, users can continu-
ously become friends with other users. In academic collaboration graphs, a
given author can constantly build new collaboration relations with other au-
thors. Inferring or predicting these missing edges can benefit many applications
such as friend recommendation (Adamic and Adar, 2003), knowledge graph
completion (Nickel et al., 2015), and criminal intelligence analysis (Berlus-
coni et al., 2016). Next, we give the formal definition of the link prediction
problem.

Definition 2.44 (Link Prediction) Let G = {V,E} denote a graph with V
as its set of nodes and E as its set of edges. Let M denote all possible edges
between nodes inV. Then, we denote the complementary set of E with respect
to M as E′ = M/E. The set E′ contains the unobserved edges between the
nodes. The goal of the link prediction task is to predict the edges that most
likely exist. Specifically, a score can be assigned to each of the edges in E′. It
indicates how likely the edge exists or will emerge in the future.

Note that the definition is stated for simple graphs and can be easily ex-
tended to complex graphs we introduced in Section 2.6. For example, for
signed graphs, in addition to the existence of an edge, we also want to pre-
dict its sign. For hypergraphs, we want to infer hyperedges which describe the
relations between multiple nodes.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

2.7 Computational Tasks on Graphs 41

Example 2.45 (Predicting Emerging Collaborations in DBLP) DBLP is an
online computer science bibliography website that hosts a comprehensive list
of research papers in computer science. A co-authorship graph can be con-
structed from the papers in DBLP, where the authors are the nodes, and authors
can be considered as connected if they have co-authored at least one paper as
recorded in DBLP. Predicting what new collaborations between authors who
never co-authored before is an interesting link prediction problem. A large
DBLP collaboration dataset for link prediction research can be found in (Yang
and Leskovec, 2015).

2.7.2 Graph-focused Tasks

There are numerous graph-focused tasks, such as graph classification, graph
matching, and graph generation. Next, we discuss the most representative graph-
focused task, i.e., graph classification.

Graph Classification
Node classification treats each node in a graph as a data sample and aims
to assign labels to these unlabeled nodes. In some applications, each sample
can be represented as a graph. For example, in chemoinformatics, chemical
molecules can be denoted as graphs where atoms are the nodes, and chemical
bonds between them are the edges. These chemical molecules may have dif-
ferent properties such as solubility and toxicity, which can be treated as their
labels. In reality, we may want to predict these properties for newly discov-
ered chemical molecules automatically. This goal can be achieved by the task
of graph classification, which aims to predict the labels for unlabeled graphs.
Graph classification cannot be carried out by traditional classification due to
the complexity of graph structures. Thus, dedicated efforts are desired. Next,
we provide a formal definition of graph classification.

Definition 2.46 (Graph Classification) Given a set of labeled graphs D =
{(Gi, yi)} with yi as the label of the graph Gi, the goal of the graph classification
task is to learn a mapping function ϕ with D, which can predict the labels of
unlabeled graphs.

In the definition above, we did not specify additional information poten-
tially associated with the graphs. For example, in some scenarios, each node
in a graph is associated with certain features that can be utilized for graph
classification.

Example 2.47 (Classifying Proteins into Enzymes or Non-enzymes) Proteins

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

42 Foundations of Graphs

can be represented as graphs, where amino acids are the nodes, and edges
between two nodes are formed if they are less than 6Å apart. Enzymes are a
type of proteins which serve as biological catalysts to catalyze biochemical
reactions. Given a protein, predicting whether it is an enzyme or not can be
treated as a graph classification task where the label for each protein is either
enzyme or non-enzyme.

2.8 Conclusion

In this chapter, we briefly introduced the concepts of graphs, the matrix rep-
resentations of graphs, and the important measures and properties of graphs,
including degree, connectivity, and centrality. We then discuss Graph Fourier
Transform and graph signal processing, which lay the foundations for spectral
based graph neural networks. We introduce a variety of complex graphs. Fi-
nally, we discuss representative computational tasks on graphs, including both
node-focused and graph-focused tasks.

2.9 Further Reading

We briefly introduce many basic concepts in graphs. There are also other more
advanced properties and concepts in graphs such as flow and cut. Furthermore,
there are many problems defined on graphs, including graph coloring prob-
lem, route problem, network flow problem, and covering problem. These con-
cepts and topics are covered by the books (Bondy et al., n.d.; Newman, 2018).
Meanwhile, more spectral properties and theories on graphs can be found in the
book (Chung and Graham, 1997). Applications of graphs in different areas can
be found in (Borgatti et al., 2009; Nastase et al., 2015; Trinajstic, 2018). The
Stanford Large Network Dataset Collection (Leskovec and Krevl, 2014) and
the Network Data Repository (Rossi and Ahmed, 2015), host large amounts
of graph datasets from various areas. The python libraries networkx (Hag-
berg et al., 2008), graph-tool (Peixoto, 2014), and SNAP (Leskovec and Sosič,
2016) can be used to analyze and visualize graph data. The Graph Signal Pro-
cessing Toolbox (Perraudin et al., 2014) can be employed to perform graph
signal processing.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3
Foundations of Deep Learning

3.1 Introduction

Machine learning is the research field of allowing computers to learn to act
appropriately from sample data without being explicitly programmed. Deep
learning is a class of machine learning algorithms that is built upon artifi-
cial neural networks. In fact, most of the vital building components of deep
learning have existed for decades, while deep learning only gains its pop-
ularity in recent years. The idea of artificial neural networks dates back to
1940s when McCulloch-Pitts Neuron (McCulloch and Pitts, 1943) was first
introduced. This linear model can recognize inputs from two categories by
linearly aggregating information from inputs and then making the decision.
Later on, the perceptron (Rosenblatt, 1958) was developed, which can learn
its parameters given training samples. The research of neural networks revived
in the 1980s. One of the breakthroughs during this period is the successful
use of the back-propagation algorithm (Rumelhart et al., 1986; Le Cun and
Fogelman-Soulié, 1987) to train deep neural network models. Note that the
back-propagation algorithm has many predecessors dating to the 1960s and
was first mentioned by Werbos to train neural networks (Werbos, 1994). The
back-propagation algorithm is still the dominant algorithm to train deep mod-
els in the modern ages of deep learning. Deep learning research revived and
gained unprecedented attention with the availability of “big data” and power-
ful computational resources in recent years. The emerging of fast GPUs allows
us to train deep models with immense size while the increasingly large data
ensures that these models can generalize well. These two advantages lead to
the tremendous success of deep learning techniques in various research areas
and result in immense real-world impact. Deep neural networks have outper-
formed state-of-the-art traditional methods by a large margin in multiple ap-
plications. Deep learning has significantly advanced the performance of the

43

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

44 Foundations of Deep Learning

image recognition task. The ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) is the largest contest in image recognition, which is held each
year between 2010 and 2017. In 2012, the deep convolutional neural network
(CNN) won this challenge for the first time by a large margin, reducing top-5
error rate from 26.1% to 15.3% (Krizhevsky et al., 2012). Since then, the deep
convolutional neural networks (CNNs) have consistently won the competition,
which further pushed the error rate down to 3.57% (He et al., 2016). Deep
learning has also dramatically improved the performance of speech recogni-
tion systems (Dahl et al., 2010; Deng et al., 2010; Seide et al., 2011). The
introduction of deep learning techniques to speech recognition leads to a mas-
sive drop in error rates, which have stagnated for years. The deep learning
techniques have massively accelerated the research field of Natural Language
Processing (NLP). Recurrent Neural Networks such as LSTM (Hochreiter and
Schmidhuber, 1997) have been broadly used in sequence-to-sequence tasks
such as machine translation (Sutskever et al., 2014; Bahdanau et al., 2014) and
dialogue systems (Vinyals and Le, 2015). As the research of “deep learning on
graphs” has its root in deep learning, understanding some basic deep learning
techniques is essential. Hence, in this chapter, we briefly introduce fundamen-
tal deep learning techniques, including feedforward neural networks, convolu-
tional neural networks, recurrent neural networks, and autoencoders. They will
serve as the foundations for deep learning on graphs. Though we focus on basic
deep models in this chapter, we will extend our discussion to advanced deep
models such as variational autoencoders and generative adversarial networks
in the later chapters.

3.2 Feedforward Networks

Feedforward networks are the basis for many important deep learning tech-
niques. A feedforward network is to approximate a certain function f ∗(x) us-
ing given data. For example, for the classification task, an ideal classifier f ∗(x)
maps an input x to a target category y. In this case, a feedforward network is
supposed to find a mapping f (x|Θ) such that it can approximate the ideal clas-
sifier f ∗(x) well. Specifically, the goal of training the feedforward network is to
learn the values of the parameters Θ that can result in the best approximation
to f ∗(x).

In feedforward networks, the information x flows from the input, through
some intermediate computations, and finally to the output y. The intermediate
computational operations are in the form of networks, which can typically be
represented as the composition of several functions. For example, the feedfor-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.2 Feedforward Networks 45

ward network shown in Figure 3.1 has four functions f (1), f (2), f (3), f (4) con-
nected in a chain and f (x) = f (4)(f (3)(f (2)(f (1)(x)))). In the feedforward net-
work shown in Figure 3.1, f (1) is the first layer, f (2) is the second layer, f (3)

is the third layer and the final layer f (4) is the output layer. The number of
computational layers in the network defines the depth of the network. During
the training of the neural network, we try to push the output f (x) to be close
to the ideal output, i.e., f ∗(x) or y. During the training process, the results
from the output layer are directly guided by the training data. In contrast, all
the intermediate layers do not obtain direct supervision from the training data.
Thus, to approximate the ideal function f ∗(x) well, the learning algorithm de-
cides the intermediate layers’ parameters using the indirect supervision signal
passing back from the output layer. Since no desired output is given for the
intermediate layers from the training data during the training procedure, these
intermediate layers are called hidden layers. As discussed before, each layer of

𝑓(#) 𝑓 (%) 𝑓 (&)

Input Hidden Layers Output Layer

𝑓(')𝑥

Figure 3.1 An illustrative example of feedforward networks

the neural network can be viewed as a vector-valued function, where both the
input and output are vectors. The elements in the layer can be treated as nodes
(or units). Thus, each layer can be considered as a set of vector-to-scalar func-
tions where each node is a function. The networks are called neural networks
as Neuroscience loosely inspires them. The operation in a node loosely mimics

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

46 Foundations of Deep Learning

what happens on a neuron in the brain, activated when it encounters sufficient
stimuli. A node gathers and transforms information from all the nodes in the
previous layer and then passes it through an activation function, which deter-
mines to what extent the information can pass through to the next layer. The
operation of gathering and transforming information is typically linear, while
the activation function adds non-linearity to the neural network, which largely
improves its approximation capability.

3.2.1 The Architecture

In a fully connected feedforward neural network, nodes in consecutive layers
form a complete bipartite graph, i.e., a node in one layer is connected to all
nodes in the other layer. A general view of this architecture is demonstrated
in Figure 3.1. Next we introduce the details of the computation involved in
the neural network. To start, we focus on a single node in the first layer. The
input of the neural network is a vector x where we use xi to denote its i-th
element. All these elements can be viewed as nodes in the input layer. A node
in the second layer (or the one after the input layer) is connected to all the
nodes in the input layer. These connections between the nodes in the input
layer and an arbitrary node in the second layer are illustrated in Figure 3.2.
The operations in one node consist of two parts: 1) combining the elements of

𝑤"
𝑤#
𝑤$

𝑤%

𝑥"

𝑥#

𝑥$

𝑥%

∑|𝛼

𝑏

𝛼(𝑏 +-𝑤. ⋅ 𝑥.
.

)

Figure 3.2 Operations in one node

the input linearly with various weights (or wi); 2) passing the value obtained
in the previous step through an activation function. Mathematically, it can be

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.2 Feedforward Networks 47

represented as

h = α(b +
4∑

i=1

wi · xi),

where b is a bias term and α() is an activation function, which will be intro-
duced in next section. We now generalize the operation to an arbitrary hidden
layer. Assume that in the k-th layer of the neural network, we have N(k) nodes
and the output of the layer can be represented as h(k) with h(k)

i denoting its i-th
element. Then, to compute h(k+1)

j in the (k+1)−th layer, the following operation
is conducted:

h(k+1)
j = α(b(k)

j +

N(k)∑
i=1

W(k)
ji h(k)

i). (3.1)

Note that we use W(k)
ji to denote the weight corresponding to the connection

between h(k)
i and h(k+1)

j and b(k)
j is the bias term for calculating h(k+1)

j . The
operations to calculate all the elements in the (k+1)-th layer can be summarized
in the matrix form as:

h(k+1) = α(b(k) +W(k)h(k)),

where W(k) ∈ RN(k+1)×N(k)
contains all weights and its j, i-th element is W(k)

ji in
Eq. (3.1) and b(k) consists of all bias terms. Specifically, for the input layer,
we have h(0) = x. Recall that we use f (k+1) to represent the operation of the
(k + 1)-th layer in the neural network; thus we have

h(k+1) = f (k+1)(h(k)) = α(b(k) +W(k)h(k)).

Note that the introduced operations are typical for hidden layers. The output
layer usually adopts a similar structure, but different activation functions to
transform the obtained information. We next introduce activation functions and
the design of the output layer.

3.2.2 Activation Functions

An activation function decides whether or to what extent the input signal should
pass. The node (or neuron) is activated if there is information passing through
it. As introduced in the previous section, the operations of a neural network are
linear without activation functions. The activation function introduces the non-
linearity into the neural network that can improve its approximation capability.
In the following, we introduce some commonly used activation functions.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

48 Foundations of Deep Learning

Rectifier
Rectifier is one of the most commonly used activation functions. As shown in
Figure 3.3, it is similar to linear functions, and the only difference is that the
rectifier outputs 0 on the negative half of its domain. In the neural network,
the units employed this activation function are called as Rectifier Linear Units
(ReLUs). The rectifier activation function is linear (identity) for all positive
input values and 0 for all negative values. Mathematically, it is defined as:

ReLU(z) = max{0, z}.

At each layer, only a few of the units are activated, which ensures efficient
computation. One drawback of the rectified linear unit is that its gradient is
0 on the negative half of the domain. Hence if the unit is not activated, no
supervision information can be passed back for training that unit. Some gen-
eralizations of ReLU have been proposed to overcome this drawback. Instead
of setting the negative input to 0, LeakyReLU (Maas et al., 2013) performs
a linear transformation with a small slope to the negative values as shown in
Figure 3.4a. More specifically, LeakyReLU can be mathematically represented
as:

LeakyReLU(z) =
{

0.01z z < 0
z z ≥ 0,

Figure 3.3 ReLU

Another generalization of ReLU is the exponential linear unit (ELU). It still
has the identity transform for the positive values but it adopts an exponential
transform for the negative values as shown in Figure 3.4b. Mathematically, the
ELU activation function can be represented as:

ELU(z) =
{

c · exp (z − 1) z < 0
z z ≥ 0,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.2 Feedforward Networks 49

(a) LeakyReLU (b) ELU

Figure 3.4 Generalizations of ReLU

(a) Logistic Sigmoid (b) Tanh

Figure 3.5 Logistic sigmoid and hyperbolic tangent

where c is a positive constant controlling the slope of the exponential function
for the negative values.

Logistic Sigmoid and Hyperbolic Tangent
Prior to the ReLU, logistic sigmoid and the hyperbolic tangent functions are the
most commonly adopted activation functions. The sigmoid activation function
can be mathematically represented as follows:

σ(z) =
1

1 + exp (−z)
.

As shown in Figure 3.5a, the sigmoid function maps the input into the range of
0 to 1. Specifically, the more negative the input is, the closer the output is to 0
and the more positive the input is, the closer the output is to 1.

The hyperbolic tangent activation function is highly related to the sigmoid
function with the following relation:

tanh(z) =
2

1 + exp (−2z)
− 1 = 2 · σ(2z) − 1.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

50 Foundations of Deep Learning

As shown in Figure 3.5b, the hyperbolic tangent function maps the input into
the range of −1 to 1. Specifically, the more negative the input is, the closer the
output is to −1 and the more positive the input is, the closer the output is to 1.

These two activation functions face the same saturation issue (Nwankpa
et al., 2018). They saturate when the input z is a huge positive number or a
very negative number. They are only sensitive to values that are close to 0.
The phenomenon of the widespread saturation makes gradient-based training
very difficult, as the gradient will be around 0 when z is either very positive
or very negative. For this reason, these two activation functions are becoming
less popular in feedforward networks.

3.2.3 Output Layer and Loss Function

The choice of the output layer and loss function varies according to the applica-
tions. Next, we introduce some commonly used output units and loss functions.

In regression tasks, a neural network needs to output continuous values. A
simple way to achieve this is to perform an affine transformation (or an affin-
ity) without the non-linear activation. Given input features (or features from
previous layers) h ∈ Rdin , a layer of linear units outputs a vector ŷ ∈ Rdou as:

ŷ =Wh + b,

where W ∈ Rdou×din and b ∈ Rdou are the parameters to be learned. For a single
sample, we can use a simple squared loss function to measure the difference
between the predicted value ŷ and the ground truth y as follows:

ℓ(y, ŷ) = (y − ŷ)2.

For classification tasks, the neural network needs to tell the classes of given
samples. Instead of directly producing a discrete output indicating the pre-
dicted labels of a given sample, we usually produce a discrete probability dis-
tribution over the labels. Different output layers and loss functions are used
depending on whether the prediction is binary or multi-way. Next, we discuss
the details in these two scenarios.

Binary Targets
For the binary classification task, we assume that a sample is labeled as either
0 or 1. Then, to perform the prediction, we first need a linear layer to project
the input (results from previous layers) into a single value. Following this, a
sigmoid function is applied to map this value into the range of 0 to 1, which
indicates the probability of the sample being predicted as label 1. In summary,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.2 Feedforward Networks 51

this process can be modeled as:

ŷ = σ(Wh + b),

where h ∈ Rdin and W ∈ R1×din . Specifically, ŷ denotes the probability of
predicting the input sample with label 1 while 1 − ŷ indicates the probability
for label 0. With the output ŷ, we can employ the cross-entropy loss to measure
the difference between the ground truth and the prediction as:

ℓ(y, ŷ) = −y · log(ŷ) − (1 − y) · log(1 − ŷ).

During the inference, an input sample is predicted with label 1 if the predicted
ŷ > 0.5 and with label 0, otherwise.

Categorical Targets
For the n-class classification task, we assume that the ground truth is denoted
as integers between 0 and n − 1. Thus, we use a one-hot vector y ∈ {0, 1}n to
indicate the label where yi = 1 indicates that the sample is labeled as i − 1. To
perform the prediction, we first need a linear layer to transform the input h to
a n-dimensional vector z ∈ Rn as:

z =Wh + b,

where W ∈ Rn×din and b ∈ Rn . We then apply the softmax function to normal-
ize z into a discrete probability distribution over the classes as:

ŷi = softmax(z)i =
exp (zi)∑
j exp

(
z j

) , i = 1, . . . , n

where zi denotes the i-th element of the vector z while ŷi is the i-th element of
the output of the softmax function. Specifically, ŷi indicates the probability of
the input sample being predicted with label i − 1. With the predicted ŷ, we can
employ the cross-entropy loss to measure the difference between the ground
truth and the prediction as:

ℓ(y, ŷ) = −
n−1∑
i=0

yi log(ŷi).

During the inference, an input sample is predicted with label i − 1 if ŷi is the
largest among all output units.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

52 Foundations of Deep Learning

3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a popular family of neural net-
works. They are best known for processing regular grid-like data such as im-
ages. They are similar to the feedforward neural networks in many aspects.
They also consist of neurons that have trainable weights and bias. Each neuron
receives and transforms some information from previous layers. The difference
is that some of the neurons in CNNs may have different designs from the ones
we introduced for feedforward networks. More specifically, the convolution
operation is proposed to design some of the neurons. The layers with the con-
volution operation are called the convolutional layers. The convolution opera-
tion typically only involves a small number of neurons in the previous layers,
which enforces sparse connections between layers. Another vital operation in
CNNs is the pooling operation, which summarizes the output of nearby neu-
rons as the new output. The layers consist of the pooling operations are called
the pooling layers. In this section, we first introduce the convolution operation
and convolutional layers, then discuss the pooling layers and finally present an
overall framework of CNNs.

3.3.1 The Convolution Operation and Convolutional Layer

In general, the convolution operation is a mathematical operation on two real
functions to produce a third function (Widder and Hirschman, 2015). The con-
volution operation between two functions f () and g() can be defined as:

(f ∗ g)(t) =
∫ ∞

−∞

f (τ)g(t − τ)dτ.

As an example of motivation, let us consider a continuous signal f (t), where t
denotes time and f (t) is the corresponding value at time t. Suppose that the sig-
nal is somewhat noisy. To obtain a less noisy signal, we would like to average
the value at time t with its nearby values. Furthermore, values corresponding
to time that is closer to t may be more similar to that at time t and thus they
should contribute more. Hence, we would like to take a weighted average over
a few values that are close to time t as its new value. This can be modeled as
a convolution operation between the signal f (t) and a weight function w(c),
where c represents the closeness to the target t. The smaller c is, the larger the
value of w(c) is. The signal after the convolution operation can be represented
as:

s(t) = (f ∗ w)(t) =
∫ ∞

−∞

f (τ)w(t − τ)dτ.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.3 Convolutional Neural Networks 53

Note that to ensure that the operation does a weighted average, w(c) is con-
strained to integrate to 1, which makes w(c) a probability density function. In
general, the convolution operation is not necessary to be a weighted average
operation and the function w(t) does not need to meet these requirements.

In practice, data is usually discrete with fixed intervals. For example, the
signal f (t) may only be sampled at integer values of time t. Assuming f () and
w() in the previous example are both defined on integer values of time t, then
the convolution can be written as:

s(t) = (f ∗ w)(t) =
∞∑

τ=−∞

f (τ)w(t − τ).

We further consider that in most of the cases, the function w() is only non-zero
within a small window. In other words, only local information contributes to
the new value of a target position. Suppose that the window size is 2n + 1, i.e.,
w(c) = 0 for c < n and c > n, then the convolution can be further modified as:

(f ∗ w)(t) =
t+n∑
τ=t−n

f (τ)w(t − τ).

In the case of neural networks, t can be considered as the indices of the
units in the input layer. The function w() is called as a kernel or a filter. The
convolution operation can be represented as a sparsely connected graph. The
convolutional layers can be explained as sliding the kernel over the input layer
and calculating the output correspondingly. An example of the layers consist-
ing of the convolution operation can be found in Figure 3.6.

Example 3.1 Figure 3.6 shows a convolutional layer, where the input and
output have the same size. To maintain the size of the output layer, the input
layer is padded with two additional units (the dashed circles) with a value 0.
The kernel of the convolution operation is shown on the right of the figure. For
simplicity, the nonlinear activation function is not shown in the figure. In this
example, n = 1, and the kernel function is defined only at 3 nearby locations.

In the practical machine learning scenario, we often deal with data with more
than one dimension such as images. The convolution operation can be extended
to data with high dimensions. For example, for a 2-dimensional image I, the
convolution operation can be performed with a 2-dimensional kernel K as:

S (i, j) = (I ∗ K)(i, j) =
i+n∑
τ=i−n

γ+n∑
j=γ−n

I(τ, γ)K(i − τ, j − γ).

Next, we discuss some key properties of the convolutional layer. Without the
loss of generality, we consider the convolutional layer for single-dimensional

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

54 Foundations of Deep Learning

1 1

2 3 2.5 2.5 2.5

0.5 1 0.5

0 2 01 2

Kernel

Figure 3.6 An example of a convolutional layer

data. These properties can also be applied to high dimensional data. Convo-
lutional layers mainly have three key properties including sparse connections,
parameter sharing and equivariant representation.

Sparse Connection

𝑥" 𝑥# 𝑥$ 𝑥%

𝑠" 𝑠# 𝑠$ 𝑠%

𝑥'

𝑠'

(a) Traditional neural network layers

𝑥" 𝑥# 𝑥$ 𝑥%

𝑠" 𝑠# 𝑠$ 𝑠%

𝑥'

𝑠'

(b) Convolutional neural network layers

Figure 3.7 Dense and sparse connectivity

In traditional neural network layers, the interactions between the input and
the output units can be described by a matrix. Each element of this matrix de-
fines an independent parameter for the interaction between each input unit and
each output unit. However, the convolutional layers usually have sparse con-
nections between layers when the kernel is only non-zero on a limited number
of input units. A comparison between the traditional neural network layers
and the convolutional neural network layers is demonstrated in Figure 3.7. In
this figure, we highlight one output unit S 3 and the corresponding input units
that affect S 3. Clearly, in the densely connected layers, a single output unit is
affected by all the input units. However, in the convolutional neural network
layers, the output unit S 3 is only affected by 3 input units x2, x3 and x4, which
are called as the receptive field of S 3. One of the major advantages of the
sparse connectivity is that it can largely improve the computational efficiency.
If there are N input and M output units, there are N × M parameters in the tra-
ditional neural network layers. The time complexity for a single computation

3.3 Convolutional Neural Networks 55

pass of this layer is O(N × M). While the convolutional layers with the same
number of input and output units only have K ×M parameters (we do not con-
sider parameter sharing here, which will be discussed in the next subsection),
when its kernel size is K. Correspondingly, the time complexity is reduced to
O(K ×M). Typically, the kernel size K is much smaller than the number of in-
put units N. In other words, the computation of convolutional neural networks
is much more efficient than that of traditional neural networks.

Parameters Sharing
As aforementioned, there are K × M parameters in the convolutional layers.
However, this number can be further reduced due to parameter sharing in
the convolutional layers. Parameter sharing refers to sharing the same set of
parameters when performing the calculation for different output units. In the
convolutional layers, the same kernel is used to calculate the values of all the
output units. This process naturally leads to parameter sharing. An illustrative
example is shown in Figure 3.8, where connections with the same color share
the same parameter. In this example, we have a kernel size of 3, which results
in 3 parameters. In general, for convolutional layers with the kernel size of K,
there are K parameters. Comparing with N × M parameters in the traditional
neural network layers, K is much smaller, and consequently, the requirement
for memory is much lower.

𝑥" 𝑥# 𝑥$ 𝑥%

𝑠" 𝑠# 𝑠$ 𝑠%

𝑥'

𝑠'

Figure 3.8 Parameter sharing

Equivariant Representation
The parameter sharing mechanism naturally introduces another important prop-
erty of CNNs, called as equivariant to translation. A function is said to be
equivariant if the output changes in the same way as the input changes. More
specifically, a function f () is equivariant to another function g() if f (g(x)) =
g(f (x)). In the case of the convolution operation, it is not difficult to verify that

56 Foundations of Deep Learning

it is equivariant to translation functions such as shifts. For example, if we shift
the input units in Figure 3.8 to the right by 1 unit, we can still find the same
output pattern that is also shifted to the right by 1 unit. This property is impor-
tant in many applications where we care more about whether a certain feature
appears than where it appears. For example, when recognizing whether an im-
age contains a cat or not, we care whether there are some important features
in the image indicating the existence of a cat instead of where these features
locate in the image. The property of equivariant to translation of CNNs is cru-
cial to their success in the area of image classification (Krizhevsky et al., 2012;
He et al., 2016).

3.3.2 Convolutional Layers in Practice

In practice, when we discuss convolution in CNNs, we do not refer to the
exact convolution operation as it is defined mathematically. The convolutional
layers used in practice differ slightly from the definition. Typically, the input
is not only a grid of real values. Instead, it is a grid of vector-valued input.
For example, in a colored image consisting of N × N pixels, three values are
associated with each pixel, representing the intensity of red, green and blue,
respectively. Each color denotes a channel of the input image. Generally, the
i-th channel of the input image consists of the i-th element of the vectors at all
positions of the input. The length of the vector at each position (e.g., pixel in
the case of image) is the number of channels. Hence, the convolution typically
involves three dimensions, while it only “slides” in two dimensions (i.e., it does
not slide in the dimension of channels). Furthermore, in typical convolutional
layers, multiple distinct kernels are applied in parallel to extract features from
the input layer. Consequently, the output layer is also multi-channel, where the
results for each kernel correspond to each output channel. Let us consider an
input image I with L channels. The convolution operation with P kernels can
be formulated as:

S (i, j, p) = (I ∗ Kp)(i, j) =
L∑

l=1

i+n∑
τ=i−n

γ+n∑
j=γ−n

I(τ, γ, l)Kp(i − τ, j − γ, l), p = 1, . . . P

(3.2)

where Kp is the p-th kernel with (2n + 1)2 · L parameters. The output clearly
consists of P channels.

In many cases, to further reduce the computation complexity, we can regu-
larly skip some positions when sliding the kernel over the input. The convolu-
tion can be only performed every s positions, where the number s is usually

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.3 Convolutional Neural Networks 57

𝑥! 𝑥" 𝑥# 𝑥$

𝑠! 𝑠"

𝑥%

𝑠#

(a) Strided convolutions

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%

𝑥'

ℎ'

𝑠" 𝑠# 𝑠$

(b) Convolutions with downsampling

Figure 3.9 Strided convolutions can be viewed as convolutions with downsam-
pling.

called the stride. We call the convolutions with stride as strided convolutions.
An illustrative example of strided convolutions is illustrated in Figure 3.9a,
where the stride is s = 2. The strided convolution can be also viewed as a
downsampling over the results of the regular convolution as shown in Fig-
ure 3.9b. The strided convolution with stride s can be represented as:

S (i, j, p) =
L∑

l=1

i+n∑
τ=i−n

γ+n∑
j=γ−n

I(τ, γ, l)Kp((i − 1) · s + 1 − τ, (j − 1) · s + 1 − γ, l).

When stride is s = 1, the strided convolution operation is equivalent to the
non-strided convolution operation as described in Eq. (3.2). As mentioned be-
fore, zero padding is usually applied to the input to maintain the size of the
output. The size of padding, the size of receptive field (or the size of kernel)
and the stride determine the size of the output when the input size is fixed.
More specifically, consider a 1-D input with size N. Suppose that the padding
size is Q, the size of the receptive field is F and the size of stride is s, the size
of the output O can be calculated with the following formulation:

O =
N − F + 2Q

s
+ 1. (3.3)

Example 3.2 The input size of the strided convolution shown in Figure 3.9a
is N = 5. Its kernel size is F = 3. Clearly, the size of zero-padding is Q = 1.
Together with stride s = 2, we can calculate the output size using Eq. (3.3):

O =
N − F + 2Q

s
+ 1 =

5 − 3 + 2 × 1
2

+ 1 = 3.

58 Foundations of Deep Learning

3.3.3 Non-linear Activation Layer

Similar to feedforward neural networks, nonlinear activation is applied to every
unit after the convolution operation. The activation function widely used in
CNNs is the ReLU. The process of applying the non-linear activation is also
called the detector stage or the detector layer.

3.3.4 Pooling Layer

A pooling layer is usually followed after the convolution layer and the detector
layer. The pooling function summarizes the statistic of a local neighborhood to
denote this neighborhood in the resulting output. Hence, the width and height
of the data is reduced after the pooling layer. However, the depth (the number
of channels) of the data does not change. The commonly used pooling opera-
tions include max pooling and average pooling as demonstrated in Figure 3.10.
These pooling operations take a 2×2 local neighborhood as input and produce
a single value based on them. As the names indicate, the max pooling opera-
tion takes the maximum value in the local neighborhood as the output while
the average pooling takes the average value of the local neighborhood as its
output.

1 2

1 0

2 1

1 3

1 0

0 1

2 2

1 1

2 3

1 2

Max Pooling

(a) Max pooling

1 2

1 0

2 1

1 3

1 0

0 1

2 2

1 1

1 1.75

0.5 1.5

Average Pooling

(b) Average pooling

Figure 3.10 Pooling methods in CNNs

3.3.5 An Overall CNN Framework

With the convolution and pooling operations introduced, we now introduce an
overall framework of convolutional neural networks with classification as the
downstream task. As shown in Figure 3.11, the overall framework for clas-
sification can be roughly split into two components – the feature extraction
component and the classification component. The feature extraction compo-
nent, which consists of convolution and pooling layers, extracts features from
the input. While the classification component is built upon fully connected

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.4 Recurrent Neural Networks 59

Input

Convolution
& Activation

Pooling

Flattening

Feature Extraction Classification

Figure 3.11 An overall framework of convolutional neural networks

feedforward neural networks. A flattening operation connects these two com-
ponents. It flattens the feature matrices in multiple channels extracted by the
feature extraction component to a single feature vector, which is served as the
input to the classification component. Note that in Figure 3.11, only a sin-
gle convolutional layer, and a single pooling layer are illustrated. However, in
practice, we usually stack multiple convolutional and pooling layers. Similarly,
in the classification component, the feedforward neural networks can consist
of multiple fully connected layers.

3.4 Recurrent Neural Networks

Many tasks, such as speech recognition, machine translation, and sentiment
classification, need to handle sequential data, where each data sample is repre-
sented as a sequence of values. Given a sentence (a sequence of words) in one
language, machine translation aims to translate it into another language. Thus,
both the input and output are sequences. Sentiment classification predicts the
sentiment of a given sentence or document where the input is a sequence, and
the output is a value to indicate the sentiment class. We may try to use standard
neural network models to deal with sequential data, where each element in the
sequence can be viewed as an input unit in the input layer. However, this strat-
egy is not sufficient for sequential data due to two main reasons. First, standard
network models often have fixed input and output size; however, sequences
(either input or output) can have different lengths for different data samples.
Second and more importantly, standard network models do not share parame-
ters to deal with input from different positions of the sequence. For example,
in language-related tasks, given two sentences of “I went to the Yellow Stone
National park last summer” and “Last summer, I went to the Yellow Stone Na-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

60 Foundations of Deep Learning

tional park”, we expect the model to figure out that the time is “last summer”
in both sentences, although it appears in different positions of the sentences.
A natural way to achieve this is the idea of parameter sharing as similar to
CNNs. The recurrent neural networks (RNNs) have been introduced to solve
these two challenges. RNNs are to recurrently apply the same functions to
each element of the sequence one by one. Since all positions in the sequence
are processed using the same functions, parameter sharing is naturally realized
among different positions. Meanwhile, the same functions can be repeatably
applied regardless of the length of the sequence, which can inherently handle
sequences with varied lengths.

3.4.1 The Architecture of Traditional RNNs

A sequence with the length n can be denoted as (x(1), x(2), . . . , x(n)). As shown
in Figure 3.12, the traditional RNN model takes one element of the sequence
at a time and processes it with a block of neural networks. The block of neural
networks often takes not only the element but also the information flowed from
the previous block as input. As a result, the information in the early positions
of the sequence can flow through the entire sequence. The blocks of neural
networks are identical. The RNN model in Figure 3.12 has an output y(i) at
each position i, which is not mandatory for RNN models.

The block of neural networks has two inputs and also produces two outputs.
We use y(i) to denote the output and h(i) to denote the information flowing to
the next position. To process the first element, h(0) is often initialized as 0. The
procedure for dealing with the i-th element can be formulated as:

h(i) = αh(Whh · h(i−1) +Whxx(i−1) + bh)

y(i) = αy(Wyhh(i) + by),

where Whh, Whx, and Wyh are the matrices to perform linear transformations;
bh and by are the bias terms; and αh() and αy() are two activation functions.

When dealing with sequential data, it is crucial to capture the long-term
dependency in the sequence. For example, in language modeling, two words
that appear far away in the sentence can be tightly related. However, it turns
out that the traditional RNN model is not good at capturing long-term depen-
dency. The main issue is that the gradients propagated over many stages tend
to either vanish or explode. Both phenomenons cause problems for the train-
ing procedure. The gradient explosion will damage the optimization process,
while the vanishing gradient makes the guidance information in the later po-
sitions challenging to affect the computations in the earlier positions. To solve
these issues, gated RNN models have been proposed. The Long short-term

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.4 Recurrent Neural Networks 61

NN NN NN NN

𝑥(") 𝑥($) 𝑥(%) 𝑥(&)

𝑦(") 𝑦($) 𝑦(%) 𝑦(&)

NN… …ℎ(')
ℎ(") ℎ($) ℎ(%) ℎ(&)

Figure 3.12 The architecture of traditional RNNs

memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent unit
(GRU) (Cho et al., 2014a) are two representative gated RNN models.

3.4.2 Long Short-Term Memory

The overall structure of the LSTM is the same as that of the traditional RNN
model. It also has the chain structure with identical neural network blocks ap-
plying to the elements of the sequence. The key difference is that a set of gat-
ing units are utilized to control the information flow in LSTM. As shown in
Figure 3.13, the information flowing through consecutive positions in a se-
quence includes the cell state C(t−1) and the hidden state h(t−1). The cell state
serves as the information from the previous states that are propagated to the
next position, and the hidden state helps decide how the information should be
propagated. The hidden state h(t) also serves as the output of this position if
necessary e.q., in sequence to sequence applications .

× +

×

𝑡𝑎𝑛ℎ

𝑡𝑎𝑛ℎ𝜎 𝜎 𝜎

𝑥(*)

×

𝐶(*-.)

ℎ(*-.)

𝐶(*)

ℎ(*)

Figure 3.13 A block of LSTM

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

62 Foundations of Deep Learning

The first step of the LSTM is to decide what information from previous
cell state we are going to discard. The decision is made by a forget gate. The
forget gate considers the previous hidden state h(t−1) and the new input x(t) and
outputs a value between 0 to 1 for each of the elements in the cell state C(t−1).
The corresponding value of each element controls how the information in each
element is discarded. The outputs can be summarized as a vector ft, which has
the same dimension as the cell state C(t−1). More specifically, the forget gate
can be formulated as:

ft = σ(W f · x(t) + U f · h(t−1) + b f),

where W f and U f are the parameters, b f is the bias term, andσ() is the sigmoid
activation function, which maps values to the range between 0 and 1.

The next step is to determine what information from the new input x(t)

should be stored in the new cell state. Similar to the forget gate, an input gate
is designed to make the decision. The input gate is formulated as:

it = σ(Wi · x(t) + Ui · h(t−1) + bi).

The input information x(t) is processed by a few layers of neural networks to
generate candidate values C̃(t), which are used to update the cell state. The
process of generating C̃(t) is as:

C̃(t) = tanh(Wc · x(t) + Uc · h(t−1) + bc).

Then, we generate the new cell state C(t) by combining the old cell state C(t−1)

and the new candidate cell C̃(t) as:

C(t) = ft ⊙ C(t−1) + it ⊙ C̃(t),

where the notation ⊙ denotes the Hadamard product, i.e., element-wise multi-
plication.

Finally we need to generate the hidden state h(t), which can flow to the next
position and serve as the output for this position at the same time if necessary.
The hidden state is based on the updated cell state C(t) with an output gate
determining which parts of the cell state to be preserved. The output gate is
formulated in the same way as the forget gate and the input gate as:

ot = σ(Wo · x(t) + Uo · h(t−1) + bo).

The new hidden state h(t) is then generated as follows:

h(t) = ot ⊙ tanh(C(t)).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.5 Autoencoders 63

The entire process of the LSTM is shown in the Figure 3.13 and can be
summarized as:

ft = σ(W f · x(t) + U f · h(t−1) + b f)

it = σ(Wi · x(t) + Ui · h(t−1) + bi)

ot = σ(Wo · x(t) + Uo · h(t−1) + bo)

C̃(t) = tanh(Wc · x(t) + Uc · h(t−1) + bc)

C(t) = ft ⊙ C(t−1) + it ⊙ C̃(t)

h(t) = ot ⊙ tanh(C(t)).

(3.4)

For convenience, we summarize the block of neural networks in LSTM for
processing the t-th position described in Eq. (3.4) as:

C(t),h(t) = LSTM(x(t),C(t−1),h(t−1)). (3.5)

3.4.3 Gated Recurrent Unit

The gated recurrent unit (GRU) as shown in Figure 3.14 can be viewed as a
variant of the LSTM where the forget gate and the input gate are combined as
the update gate and the cell state and the hidden state are merged as the same
one. These changes lead to a simpler gated RNN model which is formulated
as:

zt = σ(Wz · x(t) + Uz · h(t−1) + bz)

rt = σ(Wr · x(t) + Ur · h(t−1) + br)

h̃(t) = tanh(W · x(t) + U · (rt ⊙ h(t−1)) + b)

h(t) = (1 − zt) ⊙ h̃(t) + zt ⊙ h(t−1),

(3.6)

where zt is the update gate and rt is the reset gate. For convenience, we
summarize the process in Eq. (3.6) as:

h(t) = GRU(x(t),h(t−1)). (3.7)

3.5 Autoencoders

An autoencoder can be viewed as a neural network that tries to reproduce the
input as its output. Specifically, it has an intermediate hidden representation
h, which describes a code to denote the input. An autoencoder consists of two

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

64 Foundations of Deep Learning

+

×

𝑡𝑎𝑛ℎ𝜎 𝜎

𝑥(*)

ℎ(*,-)
×

1 −
×

ℎ(*)

𝑟* 𝑧* ℎ2(*)

Figure 3.14 A block of GRU

𝑥 ℎ 𝑥#

Figure 3.15 An autoencoder memorizes the input to the output. The bold con-
nection indicates the memorization from the input to the output and the other
connections are not used (with weights 0) in the autoencoder.

components: 1) an encoder h = f (x), which encodes the input x into a code
h, and 2) a decoder which aims to reconstruct x from the code h. The decoder
can be represented as x̂ = g(h). If an autoencoder works perfectly in reproduc-
ing the input, it is not especially useful. Instead, autoencoders are to approxi-
mately reproduce the input by including some restrictions. More specifically,
they compress necessary information of the input in the hidden code h to re-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.5 Autoencoders 65

𝑥"

Encoder

ℎ
𝑥

Decoder
“Bottleneck”

Figure 3.16 A general framework of autoencoder

produce satisfactory output. A general framework of autoencoders is shown
in Figure 3.16. The input x is pushed through a “bottleneck”, which controls
the information can be preserved in the code h. Then, a decoder network uti-
lizes the code h to output x̂ which reconstructs the input x. The network of an
autoencoder can be trained by minimizing the reconstruction error:

ℓ(x, x̂) = ℓ(x, g(f (x))), (3.8)

where ℓ(x, x̂) measures the difference between x and x̂. For example, we can
use the mean squared error as l. The design of the “bottleneck” is important
for autoencoders. Ideally, as shown in Figure 3.15, without a “bottleneck”,
an autoencoder can simply learn to memorize the input and pass it through
the decoder to reproduce it, which can render the autoencoder useless. There
are different ways to design the “botteleneck” (i.e. adding constraints to the
autoencoder). A natural way is to constrain the number of dimensions of the
code h, which leads to the undercomplete autoencoder. We can also add a
regularizer term to discourage memorization between input and output, which
leads to regularized autoencoder.

3.5.1 Undercomplete Autoencoders

Constraining the number of dimensions in the code h to be smaller than the
input x is a simple and natural way to design the “bottleneck”. An autoen-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

66 Foundations of Deep Learning

coder with code dimension smaller than the input dimension is called an “un-
dercomplete” autoencoder. An illustrative example of an “undercomplete” au-
toencoder is shown in Figure 3.16, where both the encoder and decoder only
contain a single layer of networks and the hidden layer has fewer units than the
input layer. By minimizing the reconstruction error, the model can preserve the
most important features of the input in the hidden code.

3.5.2 Regularized Autoencoders

We can also make the autoencoder deeper by stacking more layers for both the
encoder and decoder. For deep autoencoders, we must be careful about their
capacity. Autoencoders may fail to learn anything useful if the encoder and
decoder are given too much capacity. To prevent the autoencoder learning an
identity function, we can include a regularization term in the loss function of
the autoencoder as:

ℓ(x, g(f (x))) + η ·Ω(h), (3.9)

where Ω(h) is the regularization term applied to code h and η is a hyper-
parameter controlling the impact of the regularization term.

In (Olshausen and Field, 1997), L1 norm of the code h is adopted as the
regulaization term as follows:

Ω(h) = ∥h∥1. (3.10)

The L1 norm based regularization term enforces the code h to be sparse. In this
case, the autoencoder is also named as a sparse autoencoder.

Another way to enforce the sparsity in the code is to constraint the neurons
in the code h to be inactive most of the time. Here by “inactive”, we mean that
the value of a neuron in h is in a low level. We use h to denote the hidden code
so far, which doesn’t explicitly show what input leads to this code. Hence, to
explicitly express the relation, for a given input x, we use h(x) to denote its
code learned by the autoencoder. Then, the average hidden code over a set of
samples {x(i)}

m
i=1 is as:

h̄ =
1
m

m∑
i=1

h(x(i)). (3.11)

Then, we would like to enforce each element in the hidden code to be close to
a small value ρ. For example, ρ could be set to 0.05. In (Ng et al., n.d.), each
element in the hidden code is treated as a Bernoulli random variable with its
corresponding value in h̄ as mean. These random variables are constraint to be

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.6 Training Deep Neural Networks 67

close to the Bernoulli random variable with ρ as mean by KL-divergence as
follows:

Ω(h) =
∑

j

(
ρ log

ρ

h̄[j]
+ (1 − ρ) log

1 − ρ
1 − h̄[j]

)
. (3.12)

The autoencoder with the regularization term in Eq. (3.12) can also be called
sparse autoencoder. While the regularization term can be applied to under-
complete autoencoder, it can also work alone to serve as the “bottleneck”.
With the regularization terms, the hidden code h is not necessary to have a
smaller dimension than the input.

3.6 Training Deep Neural Networks

In this section, we discuss the training procedure of deep neural networks.
We briefly introduce gradient descent and its variants, which are popular ap-
proaches to train neural networks. We then detail the backpropagation algo-
rithm, which is an efficient dynamic algorithm to calculate the gradients of the
parameters of the neural networks.

3.6.1 Training with Gradient Descent

To train the deep learning models, we need to minimize a loss function L
with respect to the parameters we want to learn. Generally, we denote the loss
function as L(W) where W denotes all parameters needed to be optimized.
Gradient descent and its variants are commonly adopted to minimize the loss
function in deep learning. Gradient descent (Cauchy, n.d.) is a first-order itera-
tive optimization algorithm. At each iteration, we update the parameters W by
taking a step towards the direction of the negative gradient as follows:

W′ =W − η · ∇WL(W), (3.13)

where ∇WL(W) denotes the gradient, and η is the learning rate, which is a
positive scalar determining how much we want to go towards this direction.
The learning rate η is commonly fixed to a small constant in deep learning.

The loss function is usually a summation of penalty over a set of training
samples. Therefore, we write the loss function as follows:

L(W) =
Ns∑
i=1

Li(W), (3.14)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

68 Foundations of Deep Learning

ℎ" ℎ# ℎ$%# ℎ$ ℎ& 𝑜
… …𝑤)*+,,)*𝑤).,),

Figure 3.17 A sequence of neurons from consecutive layers

where Li(W) is the loss for the i-th sample and Ns denotes the number of sam-
ples. In many cases, directly calculating ∇WL(W) over all samples could be
both space and time expensive. This where mini-batch gradient descent comes
to rescue and is very popular in training deep neural networks. Instead of eval-
uating the gradient over all training samples, the mini-batch gradient descent
method draws a small batch of samples out of the training data and uses them to
estimate the gradient. This estimated gradient is then utilized to update the pa-
rameters. Specifically, the gradient can be estimated as

∑
j∈M
∇WL j(W), where

M denotes the set of samples in the minibatch. Other variants of gradient de-
scent have also been developed to train deep neural networks such as Ada-
grad (Duchi et al., 2011), Adadelta (Zeiler, 2012), and Adam (Kingma and
Ba, 2014). They typically have a better convergence than the standard gradient
descent methods.

3.6.2 Backpropagation

One crucial step to perform gradient-based optimization is to calculate the gra-
dients with respect to all the parameters. The Backpropagation algorithm pro-
vides an efficient way to calculate the gradients using dynamic programming.
It consists of two phases: 1) Forward Phase: In this phase, the inputs are fed
into the deep model and pass through the layers, and the outputs are calculated
using the current set of parameters, which are then used to evaluate the value of
the loss function; and 2) Backward Phase: The goal of this phase is to calculate
the gradients of the loss function with respect to the parameters. According to
the chain rule, the gradients for all the parameters can be calculated dynami-
cally in a backward direction, starting from the output layer. Next, we detail
the backward pass.

Figure 3.17 illustrates a sequence of connected neural units h0, h1, . . . , hk, o
from different layers where hi denotes a unit from the i-th layer with h0 from
the input layer and o from the output layer. Assuming that this is the only path
going through the edge (hr−1, hr), we can calculate the derivative using the

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.6 Training Deep Neural Networks 69

ℎ" ℎ#$% ℎ#… ℎ#&%

ℎ#&%

ℎ#&%

ℎ#&%

ℎ#&%

… 𝑜

Figure 3.18 Decomposition of paths

chain rule as follows:

∂L

∂w(hr−1,hr)
=
∂L

∂o
·

 ∂o
∂hk

k−1∏
i=r

∂hi+1

∂hi

 · ∂hr

∂w(hr−1,hr)
∀r ∈ 1 . . . k, (3.15)

where w(hr−1,hr) denotes the parameter between the neural units hr−1 and hr.
In multi-layer neural networks, we often have several paths going through

the edge (hr−1, hr). Hence, we need to sum up the gradients calculated through
different paths as follows:

∂L

∂w(hr−1,hr)
=
∂L

∂o
·

 ∑
[hr ,hr+1,...,hk ,o]∈P

∂o
∂hk

k−1∏
i=r

∂hi+1

∂hi

︸ ︷︷ ︸
Backpropagation computes ∆(hr ,o)= ∂L

∂hr

∂hr

∂w(hr−1,hr)
, (3.16)

whereP denotes the set of paths starting from hr to o, which can be extended to
pass the edge (hr−1, hr). There are two parts on the right hand side of Eq. (3.16),
where the second part is trouble-free (will be discussed later) to calculate while
the first part (annotated as ∆(hr, o)) can be calculated recursively. Next, we
discuss how to recursively evaluate the first term. Specifically, we have

∆(hr, o) =
∂L

∂o
·

 ∑
[hr ,hr+1,...,hk ,o]∈P

∂o
∂hk

k−1∏
i=r

∂hi+1

∂hi

=
∂L

∂o
·

 ∑
[hr ,hr+1,...,hk ,o]∈P

∂o
∂hk

k−1∏
i=r+1

∂hi+1

∂hi ·
∂hr+1

∂hr

 . (3.17)

As shown in Figure 3.18, we can decompose any path P ∈ P into two parts –

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

70 Foundations of Deep Learning

the edge (hr, hr+1) and the remaining path from hr+1 to o. Then, we can cate-
gorize the paths in P using the edge (hr, hr+1). Specifically, we denote the set
of paths in P that share the same edge (hr, hr+1) as Pr+1. As all paths in Pr+1

share the same first edge (h(r), h(r+1)), any path in Pr+1 can be characterized by
the remaining path (i.e., the path from hr+1 to o) besides the first edge. We de-
note the set of the remaining paths as P′r+1. Then, we can continue to simplify
Eq.(3.17) as follows:

∆(hr, o) =
∂L

∂o
·

 ∑
(hr ,hr+1)∈E

∂hr+1

∂hr ·

 ∑
[hr+1,...,hk ,o]∈P′r+1

∂o
∂hk

k−1∏
i=r+1

∂hi+1

∂hi

=
∑

(hr ,hr+1)∈E

∂hr+1

∂hr ·
∂L

∂o
·

 ∑
[hr+1,...,hk ,o]∈P′r+1

∂o
∂hk

k−1∏
i=r+1

∂hi+1

∂hi

=

∑
(hr ,hr+1)∈E

∂hr+1

∂hr · ∆(hr+1, o), (3.18)

where E denotes the set containing all existing edges pointing from the unit hr

to a unit hr+1 from the (r + 1)-th layer. Note that, as shown in Figure 3.18, any
unit in the (r + 1)-th layer is connected to hr, hence all units from the (r + 1)-
th layer are involved in the first summation in Eq. (3.18). Since each hr+1 is
from the later layer than hr, ∆(hr+1, o) has been evaluated during the previous
backpropagation process and can be directly used. We still need to compute
∂hr+1

∂hr to complete evaluating Eq. (3.18). To evaluate ∂hr+1

∂hr , we need to take the
activation function into consideration. Let ar+1 denote the values of unit hr+1

right before the activation function α(), that is hr+1 = α(ar+1). Then, we can
use the chain rule to evaluate ∂hr+1

∂hr as follows:

∂hr+1

∂hr =
∂α(ar+1)
∂hr =

∂α(ar+1)
∂ar+1 ·

∂ar+1

∂hr = α
′(ar+1) · w(hr ,hr+1), (3.19)

where w(hr ,hr+1) is the parameter between the two units hr and hr+1. Then, we
can rewrite ∆(hr, o) as follows:

∆(hr, o) =
∑

(hr ,hr+1)∈E

α′(ar+1) · w(hr ,hr+1) · ∆(hr+1, o). (3.20)

Now, we return to evaluate the second part of Eq. (3.17) as follows:

∂hr

∂w(hr−1,hr)
= α′(ar) · hr−1. (3.21)

With Eq. (3.20) and Eq. (3.21), we can now efficiently evaluate Eq. (3.16)
recursively.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

3.7 Conclusion 71

3.6.3 Preventing Overfitting

Deep neural networks can easily overfit to the training data due to its extremely
high model capacity. In this section, we introduce some practical techniques to
prevent neural networks from overfitting.

Weight Regularization
A common technique to prevent models from overfitting in machine learning
is to include a regularization term on model parameters into the loss function.
The regularization term constrains the model parameters to be relatively small
that generally enables the model to generalize better. Two commonly adopted
regularizers are the L1 and L2 norm of the model parameters.

Dropout
Dropout is an effective technique to prevent overfitting (Srivastava et al., 2014).
The idea of dropout is to randomly ignore some units in the networks during
each batch of the training procedure. There is a hyper-parameter called dropout
rate p controlling the probability of neglecting each unit. Then, in each itera-
tion, we randomly determine which neurons in the network to drop according
to the probability p. Instead of using the entire network, the remaining neurons
and network structure are then used to perform the calculation and prediction
for this iteration. Note that the dropout technique is usually only utilized in the
training procedure; in other words, the full network is always used to perform
predictions during the inference procedure.

Batch Normalization
Batch normalization (Ioffe and Szegedy, 2015) was initially introduced to solve
the problem of the internal covariate shift. It can also help mitigate overfitting.
Batch normalization is to normalize the activation from the previous layer be-
fore feeding them into the next layer. Specifically, during the training proce-
dure, if a mini-batch training procedure is adopted, this normalization is con-
ducted by subtracting the batch mean and dividing the batch standard devia-
tion. During the inference stage, we use the population statistics to perform the
normalization.

3.7 Conclusion

In this chapter, we introduced a variety of basic deep architectures, includ-
ing feedforward networks, convolutional neural networks, recurrent neural net-
works, and autoencoders. We then discussed gradient-based methods and the

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

72 Foundations of Deep Learning

backpropagation algorithm for training deep modes. Finally, we reviewed some
practical techniques to prevent overfitting during the training procedure of
these architectures.

3.8 Further Reading

To better understand deep learning and neural networks, proper knowledge
on linear algebra, probability and optimization is necessary. There are quite a
few high quality books on these topics such as Linear algebra (Hoffman and
Kunze, n.d.), An Introduction to Probability Theory and Its Applications (Feller,
1957), Convex Optimization (Boyd et al., 2004) and Linear Algebra and Opti-
mization for Machine Learning (Aggarwal, 2018). These topics are also usu-
ally briefly introduced in machine learning books such as Pattern Recognition
and Machine Learning (Bishop, 2006). There are dedicated books providing
more detailed knowledge and content on deep neural networks such as Deep
Learning (Goodfellow et al., 2016) and Neural Networks and Deep Learn-
ing: A Textbook (Aggarwal, 2018). In addition, various deep neural network
models can be easily constructed with libraries and platforms such as Tensor-
flow (Abadi et al., 2015) and Pytorch (Paszke et al., 2017).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

PART TWO

METHODS

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4
Graph Embedding

4.1 Introduction

Graph embedding aims to map each node in a given graph into a low-dimensional
vector representation (or commonly known as node embedding) that typically
preserves some key information of the node in the original graph. A node in a
graph can be viewed from two domains: 1) the original graph domain, where
nodes are connected via edges (or the graph structure); and 2) the embedding
domain, where each node is represented as a continuous vector. Thus, from
this two-domain perspective, graph embedding targets on mapping each node
from the graph domain to the embedding domain so that the information in the
graph domain can be preserved in the embedding domain. Two key questions
naturally arise: 1) what information to preserve? and 2) how to preserve this
information? Different graph embedding algorithms often provide different an-
swers to these two questions. For the first question, many types of informa-
tion have been investigated such as node’s neighborhood information (Perozzi
et al., 2014; Tang et al., 2015; Grover and Leskovec, 2016), node’s structural
role (Ribeiro et al., 2017), node status (Ma et al., 2017; Lai et al., 2017; Gu
et al., 2018) and community information (Wang et al., 2017c). There are var-
ious methods proposed to answer the second question. While the technical
details of these methods vary, most of them share the same idea, which is to
reconstruct the graph domain information to be preserved by using the node
representations in the embedding domain. The intuition is those good node
representations should be able to reconstruct the information we desire to pre-
serve. Therefore, the mapping can be learned by minimizing the reconstruction
error. We illustrate an overall framework in Figure 4.1 to summarize the gen-
eral process of graph embedding. As shown in Figure 4.1, there are four key
components in the general framework as:

75

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

76 Graph Embedding

Graph Domain Embedding Domain

Mapping

Extractor Reconstructor

I

<latexit sha1_base64="ITBchr1GllRCIBEbaRWpgyoxKF4=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUQKuiy60V0F+4A2lMl00g6dTMLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknSKQw6Lrfztr6xubWdmmnvLu3f3BYOTpumzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmt7nfeeLaiFg94jThfkRHSoSCUbRSrx9RHDMqs/vZoFJ1a+4cZJV4BalCgeag8tUfxiyNuEImqTE9z03Qz6hGwSSflfup4QllEzriPUsVjbjxs3nkGTm3ypCEsbZPIZmrvzcyGhkzjQI7mUc0y14u/uf1Ugyv/UyoJEWu2OKjMJUEY5LfT4ZCc4ZyagllWtishI2ppgxtS2Vbgrd88ippX9a8eq3+UK82boo6SnAKZ3ABHlxBA+6gCS1gEMMzvMKbg86L8+58LEbXnGLnBP7A+fwBfryRZg==</latexit>

I 0

<latexit sha1_base64="PToQfmSyj8K/qqaHj2Tjo4Yp4YE=">AAAB83icbVDLSgMxFL2pr1pfVZdugkV0VWakoMuiG91VsA/oDCWTZtrQTGZIMkIZ+htuXCji1p9x59+YaWehrQcCh3Pu5Z6cIBFcG8f5RqW19Y3NrfJ2ZWd3b/+genjU0XGqKGvTWMSqFxDNBJesbbgRrJcoRqJAsG4wuc397hNTmsfy0UwT5kdkJHnIKTFW8ryImDElIrufnQ+qNafuzIFXiVuQGhRoDapf3jCmacSkoYJo3XedxPgZUYZTwWYVL9UsIXRCRqxvqSQR0342zzzDZ1YZ4jBW9kmD5+rvjYxEWk+jwE7mGfWyl4v/ef3UhNd+xmWSGibp4lCYCmxinBeAh1wxasTUEkIVt1kxHRNFqLE1VWwJ7vKXV0nnsu426o2HRq15U9RRhhM4hQtw4QqacActaAOFBJ7hFd5Qil7QO/pYjJZQsXMMf4A+fwDjR5GX</latexit>

Objective

Figure 4.1 A general framework for graph embedding

• A mapping function, which maps the node from the graph domain to the
embedding domain.

• An information extractor, which extracts the key information I we want to
preserve from the graph domain.

• A reconstructor to construct the extracted graph information I using the
embeddings from the embedding domain. Note that the reconstructed infor-
mation is denoted as I′ as shown in Figure 4.1.

• An objective based on the extracted information I and the reconstructed
information I′. Typically, we optimize the objective to learn all parameters
involved in the mapping and/or reconstructor.

In this chapter, we introduce representative graph embedding methods, which
preserve different types of information in the graph domain, based on the
general framework in Figure 4.1. Furthermore, we introduce graph embed-
ding algorithms designed specifically for complex graphs, including heteroge-
neous graphs, bipartite graphs, multi-dimensional graphs, signed graphs, hy-
pergraphs, and dynamic graphs.

4.2 Graph Embedding on Simple Graphs 77

4.2 Graph Embedding on Simple Graphs

In this section, we introduce graph embedding algorithms for simple graphs
that are static, undirected, unsigned, and homogeneous, as introduced in Chap-
ter 2.2. We organize algorithms according to the information they attempt to
preserve, including node co-occurrence, structural role, node status, and com-
munity structure.

4.2.1 Preserving Node Co-occurrence

One of the most popular ways to extract node co-occurrence in a graph is via
performing random walks. Nodes are considered similar to each other if they
tend to co-occur in these random walks. The mapping function is optimized so
that the learned node representations can reconstruct the “similarity” extracted
from random walks. One representative network embedding algorithm pre-
serving node co-occurrence is DeepWalk (Perozzi et al., 2014). Next, we first
introduce the DeepWalk algorithm under the general framework by detailing
its mapping function, extractor, reconstructor, and objective. Then, we present
more node co-occurrence preserving algorithms such as node2vec (Grover and
Leskovec, 2016) and LINE (Tang et al., 2015).

Mapping Function
A direct way to define the mapping function f (vi) is using a look-up table. It
means that we retrieve node vi’s embedding ui given its index i. Specifically,
the mapping function is implemented as:

f (vi) = ui = e⊤i W, (4.1)

where ei ∈ {0, 1}N with N = |V| is the one-hot encoding of the node vi. In
particular, ei contains a single element ei[i] = 1 and all other elements are 0.
WN×d is the embedding parameters to be learned where d is the dimension of
the embedding. The i-th row of the matrix W denotes the representation (or
the embedding) of node vi. Hence, the number of parameters in the mapping
function is N × d.

Random Walk Based Co-occurrence Extractor
Given a starting node v(0) in a graph G, we randomly walk to one of its neigh-
bors. We repeat this process from the node until T nodes are visited. This
random sequence of visited nodes is a random walk of length T on the graph.
We formally define a random walk as follows.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

78 Graph Embedding

Definition 4.1 (Random Walk) Let G = {V,E} denote a connected graph.
We now consider a random walk starting at node v(0) ∈ V on the graph G.
Assume that at the t-th step of the random walk, we are at node v(t) and then we
proceed the random walk by choosing the next node according to the following
probability:

p(v(t+1)|v(t)) =

 1
d(v(t)) , if v(t+1) ∈ N(v(t))

0, otherwise,

where d(v(t)) denotes the degree of node v(t) and N(v(t)) is the set of neighbors
of v(t). In other words, the next node is randomly selected from the neighbors
of the current node following a uniform distribution.

We use a random walk generator to summarize the above process as below:

W = RW(G, v(0),T),

whereW = (v(0), . . . , v(T−1)) denotes the generated random walk where v(0) is
the starting node and T is the length of the random walk.

Random walks have been employed as a similarity measure in various tasks
such as content recommendation (Fouss et al., 2007) and community detec-
tion (Andersen et al., 2006). In DeepWalk, a set of short random walks is gen-
erated from a given graph, and then node co-occurrence is extracted from these
random walks. Next, we detail the process of generating the set of random
walks and extracting co-occurrence from them.

To generate random walks that can capture the information of the entire
graph, each node is considered as a starting node to generate γ random walks.
Therefore, there are N · γ random walks in total. This process is shown in
Algorithm 1. The input of the algorithm includes a graph G, the length T of
the random walk, and the number of random walks γ for each starting node.
From line 4 to line 8 in Algorithm 1, we generate γ random walks for each
node in V and add these random walks to R. In the end, R, which consists of
N · γ generated random walks, is the output of the algorithm.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.2 Graph Embedding on Simple Graphs 79

Algorithm 1: Generating Random Walks

1 Input: G = {V,E}, T , γ
2 Output: R
3 Initialization: R ← ∅
4 for i in range(1,γ) do
5 for v ∈ V do
6 W← RW(G, v(0),T)
7 R ← R ∪ {W}

8 end
9 end

These random walks can be treated as sentences in an “artificial language”
where the set of nodesV is its vocabulary. The Skip-gram algorithm (Mikolov
et al., 2013) in language modeling tries to preserve the information of the sen-
tences by capturing the co-occurrence relations between words in these sen-
tences. For a given center word in a sentence, those words within a certain
distance w away from the center word are treated as its “context”. Then the
center word is considered to be co-occurred with all words in its “context”.
The Skip-gram algorithm aims to preserve such co-occurrence information.
These concepts are adopted to the random walks to extract co-occurrence re-
lations between nodes (Perozzi et al., 2014). Specifically, we denote the co-
occurrence of two nodes as a tuple (vcon, vcen), where vcen denotes the center
node and vcon indicates one of its context nodes. The process of extracting the
co-occurrence relations between nodes from the random walks is shown in
Algorithm 2. For each random walkW ∈ R, we iterate over the nodes in the
random walk (line 5). For each node v(i), we add (v(i− j), v(i)) and (v(i+ j), v(i)) into
the list of co-occurrence I for j = 1, . . . ,w (from line 6 to line 9). Note that for
the cases where i− j or i+ j is out of the range of the random walk, we simply
ignore them. For a given center node, we treat all its “context” nodes equally
regardless of the distance between them. In (Cao et al., 2015), the “context”
nodes are treated differently according to their distance to the center node.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

80 Graph Embedding

Algorithm 2: Extracting Co-occurrence

1 Input: R, w
2 Output: I
3 Initialization: I ← []
4 forW in R do
5 for v(i) ∈ W do
6 for j in range(1,w) do
7 I.append((v(i− j), v(i)))
8 I.append((v(i+ j), v(i)))
9 end

10 end
11 end

Reconstructor and Objective
With the mapping function and the node co-occurrence information, we dis-
cuss the process of reconstructing the co-occurrence information using the
representations in the embedding domain. To reconstruct the co-occurrence
information, we try to infer the probability of observing the tuples in I. For
any given tuple (vcon, vcen) ∈ I, there are two roles of nodes, i.e., the center
node vcen and the context node vcon. A node can play both roles, i.e., the center
node and the context node of other nodes. Hence, two mapping functions are
employed to generate two node representations for each node corresponding
to its two roles. They can be formally stated as:

fcen(vi) = ui = e⊤i Wcen

fcon(vi) = vi = e⊤i Wcon.

For a tuple (vcon, vcen), the co-occurrence relation can be explained as observing
vcon in the context of the center node vcen. With the two mapping functions fcen

and fcon, the probability of observing vcon in the context of vcen can be modeled
using a softmax function as follows:

p(vcon|vcen) =
exp(fcon(vcon)⊤ fcen(vcen))∑
v∈V

exp(fcon(v) f⊤cen(vcen))
, (4.2)

which can be regarded as the reconstructed information from the embedding
domain for the tuple (vcon, vcen). For any given tuple (vcon, vcen), the reconstruc-
tor Rec can return the probability in Eq. (4.2) that is summarized as:

Rec((vcon, vcen)) = p(vcon|vcen).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.2 Graph Embedding on Simple Graphs 81

If we can accurately infer the original graph information of I from the
embedding domain, the extracted information I can be considered as well-
reconstructed. To achieve the goal, the Rec function should return high prob-
abilities for extracted tuples in the I, while low probabilities for randomly
generated tuples. We assume that these tuples in the co-occurrence I are in-
dependent to each other as that in the Skip-gram algorithm (Mikolov et al.,
2013). Hence, the probability of reconstructing I can be modeled as follows:

I′ = Rec(I) =
∏

(vcon,vcen)∈I

p(vcon|vcen), (4.3)

There may exist duplicate tuples in I. To remove these duplicates in Eq. (4.3),
we re-formulate it as follows:∏

(vcon,vcen)∈set(I)

p(vcon|vcen)#(vcon,vcen), (4.4)

where set(I) denotes the set of unique tuples in I without duplicates and
#(vcon, vcen) is the frequency of tuples (vcon, vcen) in I. Therefore, the tuples that
are more frequent in I contribute more to the overall probability in Eq. (4.4).
To ensure better reconstruction, we need to learn the parameters of the mapping
functions such that Eq. (4.4) can be maximized. Thus, the node embeddings
Wcon and Wcen (or parameters of the two mapping functions) can be learned
by minimizing the following objective:

L(Wcon,Wcen) = −
∑

(vcon,vcen)∈set(I)

#(vcon, vcen) · log p(vcon|vcen), (4.5)

where the objective is the negative logarithm of Eq. (4.4).

Speeding Up the Learning Process
In practice, calculating the probability in Eq. (4.2) is computationally unfea-
sible due to the summation over all nodes in the denominator. To address this
challenge, two main techniques have been employed – one is hierarchical soft-
max, and the other is negative sampling (Mikolov et al., 2013).

Hierarchical Softmax
In the hierarchical softmax, nodes in a graph G are assigned to the leaves

of a binary tree. A toy example of the binary tree for hierarchical softmax is
shown in Figure 4.2 where there are 8 leaf nodes, i.e., there are 8 nodes in the
original graph G. The probability p(vcon|vcen) can now be modeled through the
path to node vcon in the binary tree. Given the path to the node vcon identified
by a sequence of tree nodes (p(0), p(1), . . . , p(H)) with p(0) = b0 (the root) and

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

82 Graph Embedding

𝑣" 𝑣# 𝑣$ 𝑣% 𝑣& 𝑣' 𝑣(𝑣)

𝑏+

𝑏" 𝑏#

𝑏$ 𝑏% 𝑏& 𝑏'

Figure 4.2 An illustrative example of hierarchical softmax. The path to node v3 is
highlighted in red.

p(H) = vcon, the probability can be obtained as:

p(vcon|vcen) =
H∏

h=1

ppath(p(h)|vcen),

where ppath(p(h)|vcen) can be modeled as a binary classifier that takes the cen-
ter node representation f (vcen) as input. Specifically, for each internal node, a
binary classifier is built to determine the next node for the path to proceed.

We use the root node b0 to illustrate the binary classifier where we are cal-
culating the probability p(v3|v8) (i.e. (vcon, vcen) = (v3, v8))) for the toy example
shown in Figure 4.2. At the root node b0, the probability of proceeding to the
left node can be computed as:

p(le f t|b0, v8) = σ(fb(b0)⊤ f (v8)),

where fb is a mapping function for the internal nodes, f is the mapping function
for the leaf nodes (or nodes in graph G) and σ is the sigmoid function. Then
the probability of the right node at b0 can be calculated as

p(right|b0, v8) = 1 − p(le f t|b0, v8) = σ(− fb(b0)⊤ f (v8)).

Hence, we have

ppath(b1|v8) = p(le f t|b0, v8).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.2 Graph Embedding on Simple Graphs 83

Note that the embeddings of the internal nodes can be regarded as the param-
eters of the binary classifiers, and the input of these binary classifiers is the
embedding of the center node in (vcon, vcen). By using the hierarchical softmax
instead of the conventional softmax in Eq. (4.2), the computational cost can be
hugely reduced from O(|V|) to O(log |V|). Note that in the hierarchical soft-
max, we do not learn two mapping functions for nodes inV any more. Instead,
we learn a mapping function f for nodes inV (or leaf nodes in the binary tree)
and a mapping function fb for the internal nodes in the binary tree.

Example 4.2 (Hierarchical Softmax) Assume that (v3, v8) is a tuple describ-
ing co-occurrence information between nodes v3 and v8 with v3 the context
node and v8 the center node in a given graph G and the binary tree of hierarchi-
cal softmax for this graph is shown in Figure 4.2. The probability of observing
v3 in the context of v8, i.e., p(v3|v8), can be computed as follows:

p(v3|v8) = ppath(b1|v8) · ppath(b4|v8) · ppath(v3|v8)

= p(le f t|b0, v8) · p(right|b1, v8) · p(le f t|b4, v8).

Negative Sampling
Another popular approach to speed up the learning process is negative sam-
pling (Mikolov et al., 2013). It is simplified from Noise Contrasitive Estimation
(NCE) (Gutmann and Hyvärinen, 2012) that has been shown to approximately
maximize the log probability of the softmax. However, our ultimate goal is to
learn high quality node representations instead of maximizing the probabili-
ties. It is reasonable to simplify NCE as long as the learned node representa-
tions retain good quality. Hence, the following modifications are made to NCE
and Negative Sampling are defined as follows. For each tuple (vcon, vcen) in I,
we sample k nodes that do not appear in the “context” of the center node vcen to
form the negative sample tuples. With these negative sample tuples, we define
Negative Sampling for (vcon, vcen) by the following objective:

logσ
(

fcon(vcon)⊤ fcen(vcen)
)
+

k∑
i=1

Evn∼Pn(v)

[
logσ

(
− fcon(vn)⊤ fcen(vcen)

)]
,

(4.6)

where the probability distribution Pn(v) is the noise distribution to sample the
negative tuples that is often set to Pn(v) ∼ d(v)3/4 as suggested in (Mikolov
et al., 2013; Tang et al., 2015). By maximizing Eq. (4.6), the probabilities
between the nodes in the true tuples fromI are maximized while these between
the sample nodes in the negative tuples are minimized. Thus, it tends to ensure
that the learned node representations preserve the co-occurrence information.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

84 Graph Embedding

The objective in Eq. (4.6) is used to replace log p(vcon|vcen) in Eq. (4.5) that
results in the following overall objective:

L(Wcon,Wcen) =
∑

(vcon,vcen)∈set(I)

#(vcon, vcen) · (logσ
(

fcon(vcon)⊤ fcen(vcen)
)

+

k∑
i=1

Evn∼Pn(v)

[
logσ

(
− fcon(vn)⊤ fcen(vcen)

)]
).

(4.7)

By using negative sampling instead of the conventional softmax, the computa-
tional cost can be hugely reduced from O(|V|) to O(k).

Training Process in Practice
We have introduced the overall objective function in Eq. (4.5) and two strate-

gies to improve the efficiency of calculating the loss function. The node rep-
resentations can now be learned by optimizing the objective in Eq. (4.5) (or
its alternatives). However, in practice, instead of evaluating the entire objec-
tive function over the whole set of I and performing gradient descent based
updates, the learning process is usually done in a batch-wise way. Specifi-
cally, after generating each random walkW, we can extract its corresponding
co-occurrence information IW. Then, we can formulate an objective function
based on IW and evaluate the gradient based on this objective function to per-
form the updates for the involved node representations.

Other Co-occurrence Preserving Methods
There are some other methods that aim to preserve co-occurrence information
such as node2vec (Grover and Leskovec, 2016) and LINE (second-order) (Tang
et al., 2015). They are slightly different from DeepWalk but can still be fitted
to the general framework in Figure 4.1. Next, we introduce these methods with
the focus on their differences from DeepWalk.

node2vec
node2vec (Grover and Leskovec, 2016) introduces a more flexible way to

explore the neighborhood of a given node through the biased-random walk,
which is used to replace the random walk in DeepWalk to generate I. Specif-
ically, a second-order random walk with two parameters p and q is proposed.
It is defined as follows:

Definition 4.3 Let G = {V,E} denote a connected graph. We consider a ran-
dom walk starting at node v(0) ∈ V in the graph G. Assume that the random
walk has just walked from the node v(t−1) to node v(t) and now resides at the

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.2 Graph Embedding on Simple Graphs 85

node v(t). The walk needs to decide which node to go for the next step. In-
stead of choosing v(t+1) uniformly from the neighbors of v(t), a probability to
sample is defined based on both v(t) and v(t−1). In particular, an unnormalized
“probability” to choose the next node is defined as follows:

αpq(v(t+1)|v(t−1), v(t)) =

1
p if dis(v(t−1), v(t+1)) = 0
1 if dis(v(t−1), v(t+1)) = 1
1
q if dis(v(t−1), v(t+1)) = 2

(4.8)

where dis(v(t−1), v(t+1)) measures the length of the shortest path between node
v(t−1) and v(t+1). The unnormalized “probability” in Eq. (4.8) can then be nor-
malized as a probability to sample the next node v(t+1).

Note that the random walk based on this normalized probability is called
second-order random walk as it considers both the previous node v(t−1) and the
current node v(t) when deciding the next node v(t+1). The parameter p controls
the probability to revisit the node v(t−1) immediately after stepping to node v(t)

from node v(t−1). Specifically, a smaller p encourages the random walk to re-
visit while a larger p ensures the walk to less likely backtrack to visited nodes.
The parameter q allows the walk to differentiate the “inward” and “outward”
nodes. When q > 1, the walk is biased to nodes that are close to node v(t−1),
and when q < 1, the walk tends to visit nodes that are distant from node v(t−1).
Therefore, by controlling the parameters p and q, we can generate random
walks with different focuses. After generating the random walks according to
the normalized version of the probability in Eq. (4.8), the remaining steps of
node2vec are the same as DeepWalk.

LINE
The objective of LINE (Tang et al., 2015) with the second order proximity

can be expressed as follows:

−
∑

(vcon,vcen)∈E

(logσ
(

fcon(vcon)⊤ fcen(vcen)
)

+

k∑
i=1

Evn∼Pn(v)

[
logσ

(
− fcon(vn)⊤ fcen(vcen)

)]
), (4.9)

where E is the set of edges in the graph G. Comparing Eq. (4.9) with Eq. (4.7),
we can find that the major difference is that LINE adopts E instead of I as the
information to be reconstructed. In fact, E can be viewed as a special case of I
where the length of the random walk is set to 1.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

86 Graph Embedding

A Matrix Factorization View
In (Qiu et al., 2018b), it is shown that these aforementioned network embed-
ding methods can be viewed from a matrix factorization perspective. For ex-
ample, we have the following theorem for DeepWalk.

Theorem 4.4 ((Qiu et al., 2018b)) In the matrix form, DeepWalk with neg-
ative sampling for a given graph G is equivalent to factoring the following
matrix:

log

vol(G)
T

 T∑
r=1

Pr

 D−1

 − log(k),

where P = D−1A with A the adjacency matrix of graphG and D its correspond-
ing degree matrix, T is the length of random walk, vol(G) =

∑|V|
i=1

∑|V|
j=1 Ai, j and

k is the number of negative samples.

Actually, the matrix factorization form of DeepWalk can be also fitted into
the general framework introduced in above. Specifically, the information ex-
tractor is

log

vol(G)
T

 T∑
r=1

Pr

 D−1

 .
The mapping function is the same as that introduced for DeepWalk, where
we have two mapping functions, fcen() and fcon(). The parameters for these
two mapping functions are Wcen and Wcon, which are also the two sets of
node representations for the graph G. The reconstructor, in this case, can be
represented in the following form: WconW⊤

cen. The objective function can then
be represented as follows:

L(Wcon,Wcen) =

∥∥∥∥∥∥∥log

vol(G)
T

 ⊤∑
r=1

Pr

 D−1

 − log(b) −WconW⊤
cen

∥∥∥∥∥∥∥
2

F

.

The embeddings Wcon and Wcen can thus be learned by minimizing this ob-
jective. Similarly, LINE and node2vec can also be represented in the matrix
form (Qiu et al., 2018b).

4.2.2 Preserving Structural Role

Two nodes close to each other in the graph domain (e.g., nodes d and e in Fig-
ure 4.3) tend to co-occur in many random walks. Therefore, the co-occurrence
preserving methods are likely to learn similar representations for these nodes
in the embedding domain. However, in many real-world applications, we want

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.2 Graph Embedding on Simple Graphs 87

𝑐
𝑑

𝑒

𝑢
𝑏

𝑎

𝑦

𝑥

𝑤

𝑣

𝑡

𝑧
𝑓

Figure 4.3 An illustration of two nodes that share similar structural role

to embed the nodes u and v in Figure 4.3 to be close in the embedding domain
since they share a similar structural role. For example, if we want to differenti-
ate hubs from non-hubs in airport networks, we need to project the hub cities,
which are likely to be apart from each other but share a similar structural role,
into similar representations. Therefore, it is vital to develop graph embedding
methods that can preserve structural roles.

The method struc2vec is proposed to learn node representations that can pre-
serve structural identity (Ribeiro et al., 2017). It has the same mapping func-
tion as DeepWalk while it extracts structural role similarity from the original
graph domain. In particular, a degree-based method is proposed to measure the
pairwise structural role similarity, which is then adopted to build a new graph.
Therefore, the edge in the new graph denotes structural role similarity. Next,
the random walk based algorithm is utilized to extract co-occurrence relations
from the new graph. Since struc2vec shares the same mapping and reconstruc-
tor functions as Deepwalk, we only detail the extractor of struc2vec. It includes
the structural similarity measure, the built new graph, and the biased random
walk to extract the co-occurrence relations based on the new graph.

Measuring Structural Role Similarity
Intuitively, the degree of nodes can indicate their structural role similarity. In
other words, two nodes with similar degree can be considered as structurally
similar. Furthermore, if their neighbors also have similar degree, these nodes
can be even more similar. Based on this intuition, a hierarchical structural sim-
ilarity measure is proposed in (Ribeiro et al., 2017). We use Rk(v) to denote the
set of nodes that are k-hop away from the node v. We order the nodes in Rk(v)
according to their degree to the degree sequence s(Rk(v)). Then, the structural
distance gk(v1, v2) between two nodes v1 and v2 considering their k-hop neigh-
borhoods can be recursively defined as follows:

gk(v1, v2) = gk−1(v1, v2) + dis(s(Rk(v1)), s(Rk(v2))),

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

88 Graph Embedding

where dis(s(Rk(v1)), s(Rk(v2))) ≥ 0 measures the distance between the ordered
degree sequences of v1 and v2. In other words, it indicates the degree sim-
ilarity of k-hop neighbors of v1 and v2. Note that g−1(·, ·) is initialized with
0. Both dis(·, ·) and gk(·, ·) are distance measures. Therefore, the larger they
are, more dissimilar the two compared inputs are. The sequences s(Rk(v1)) and
s(Rk(v2)) can be of different lengths and their elements are arbitrary integers.
Thus, Dynamic Time Warping (DTW) (Sailer, 1978; Salvador and Chan, 2007)
is adopted as the distance function dis(·, ·) since it can deal with sequences with
different sizes. The DTW algorithm finds the optimal alignment between two
sequences such that the sum of the distance between the aligned elements is
minimized. The distance between two elements a and b is measured as:

l(a, b) =
max(a, b)
min(a, b)

− 1.

Note that this distance depends on the ratio between the maximum and min-
imum of the two elements; thus, it can regard l(1, 2) much different from
l(100, 101), which is desired when measuring difference between degrees.

Constructing a Graph Based on Structural Similarity
After obtaining the pairwise structural distance, we can construct a multi-
layer weighted graph that encodes the structural similarity between the nodes.
Specifically, with k∗ as the diameter of the original graph G, we can build a k∗

layer graph where the k-th layer is built upon the weights defined as follows:

wk(u, v) = exp(−gk(u, v)).

Here, wk(u, v) denotes the weight of the edge between nodes u and v in the k-th
layer of the graph. The connection between nodes u and v is stronger when
the distance gk(u, v) is smaller. Next, we connect different layers in the graph
with directed edges. In particular, every node v in the layer k is connected to its
corresponding node in the layers k − 1 and k + 1. We denote the node v in the
k-th layer as v(k) and the edge weights between layers are defined as follows

w(v(k), v(k+1)) = log(Γk(v) + e), k = 0, . . . , k∗ − 1,

w(v(k), v(k−1)) = 1, k = 1, . . . , k∗,

where

Γk(v) =
∑
v j∈V

1(wk(v, v j) > w̄k)

with w̄k =
∑

(u,v)∈Ek

wk(u, v)/
(

N
2

)
denoting the average edge weight of the com-

plete graph (Ek is its set of edges) in the layer k. Thus, Γk(v) measures the sim-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.2 Graph Embedding on Simple Graphs 89

ilarity of node v to other nodes in the layer k. This design ensures that a node
has a strong connection to the next layer if it is very similar to other nodes in
the current layer. As a consequence, it is likely to guide the random walk to the
next layer to acquire more information.

Biased Random Walks on the Built Graph
A biased random walk algorithm is proposed to generate a set of random walks,
which are used to generate co-occurrence tuples to be reconstructed. Assume
that the random walk is now at the node u in the layer k, for the next step,
the random walk stays at the same layer with the probability q and jumps to
another layer with the probability 1 − q, where q is a hyper-parameter.

If the random walk stays at the same layer, the probability of stepping from
the current node u to another node v is computed as follows

pk(v|u) =
exp(−gk(v, u))

Zk(u)
,

where Zk(u) is a normalization factor for the node u in the layer k, which is
defined as follows:

Zk(u) =
∑

(v,u)∈Ek

exp(−gk(v, u)).

If the walk decides to walk to another layer, the probabilities to the layer
k + 1 and to the layer k − 1 are calculated as follows:

pk

(
u(k), u(k+1)

)
=

w(u(k),u(k+1))
w(u(k),u(k+1))+w(u(k),u(k−1))

pk

(
u(k), u(k−1)

)
= 1 − pk

(
u(k), u(k+1)

)
We can use this biased random walk to generate the set of random walks

where we can extract the co-occurrence relations between nodes. Note that the
co-occurrence relations are only extracted between different nodes, but not be-
tween the same node from different layers. In other words, the co-occurrence
relations are only generated when the random walk takes steps with the same
layer. These co-occurrence relations can serve as the information to be recon-
structed from the embedding domain as DeepWalk.

4.2.3 Preserving Node Status

Global status of nodes, such as their centrality scores introduced in Section 2.3.3,
is one type of important information in graphs. In (Ma et al., 2017), a graph em-
bedding method is proposed to preserve node co-occurrence information and
node global status jointly. The method mainly consists of two components: 1)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

90 Graph Embedding

a component to preserve the co-occurrence information; and 2) a component
to keep the global status. The component to preserve the co-occurrence infor-
mation is the same as Deepwalk that is introduced in Section 4.2.1. Hence, in
this section, we focus on the component to preserve the global status infor-
mation. Instead of preserving global status scores for nodes in the graph, the
proposed method aims to preserve their global status ranking. Hence, the ex-
tractor calculates the global status scores and then ranks the nodes according
to their scores. The reconstructor is utilized to restore the ranking information.
Next, we detail the extractor and the reconstructor.

Extractor
The extractor first calculates the global status scores and then obtains the global
rank of the nodes. Any of the centrality measurements introduced in Sec-
tion 2.3.3 can be utilized to calculate the global status scores. After obtaining
the global status scores, the nodes can be rearranged in descending order ac-
cording to the scores. We denote the rearranged nodes as (v(1), . . . , v(N)) where
the subscript indicate the rank of the node.

Reconstructor
The reconstructor is to recover the ranking information extracted by the ex-
tractor from the node embeddings. To reconstruct the global ranking, the re-
constructor in (Ma et al., 2017) aims to preserve relative ranking of all pairs
of nodes in (v(1), . . . , v(N)). Assume that the order between a pair of nodes is
independent of other pairs in (v(1), . . . , v(N)), then the probability of the global
ranking preserved can be modeled by using the node embedding as:

pglobal =
∏

1≤i< j≤N

p(v(i), v(j)),

where p(v(i), v(j)) is the probability that node v(i) is ranked before v(j) based on
their node embeddings. In detail, it is modeled as:

p
(
v(i),, v(j)

)
= σ

(
wT (u(i) − u(j))

)
,

where u(i) and u(j) are the node embeddings for nodes v(i) and v(j) respectively
(or outputs of the mapping function for v(i) and v(j)), and w is a vector of
parameters to be learned. To preserve the order information, we expect that any
ordered pair (v(i), v(j)) should have a high probability to be constructed from
the embedding. This can be achieved by minimizing the following objective
function:

Lglobal = − log pglobal.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.2 Graph Embedding on Simple Graphs 91

Note that this objective Lglobal can be combined with the objective to preserve
the co-occurrence information such that the learned embeddings can preserve
both the co-occurrence information and the global status.

4.2.4 Preserving Community Structure

Community structure is one of the most prominent features in graphs (New-
man, 2006) that has motivated the development of embedding methods to pre-
serve such critical information (Wang et al., 2017c; Li et al., 2018d). A matrix
factorization based method is proposed to preserve both node-oriented struc-
ture, such as connections and co-occurrence, and community structure (Wang
et al., 2017c). Next, we first use the general framework to describe its compo-
nent to preserve node-oriented structure information, then introduce the com-
ponent to preserve the community structure information with modularity max-
imization and finally discuss its overall objective.

Preserving Node-oriented Structure
Two types of node-oriented structure information are preserved (Wang et al.,
2017c) – one is pairwise connectivity information, and the other is the simi-
larity between the neighborhoods of nodes. Both types of information can be
extracted from the given graph and represented in the form of matrices.

Extractor
The pairwise connection information can be extracted from the graph and be
represented as the adjacency matrix A. The goal of the reconstrcutor is to re-
construct the pairwise connection information (or the adjacency matrix) of the
graph. The neighborhood similarity measures how similar the neighborhoods
of two nodes are. For nodes vi and v j, their pairwise neighborhood similarity
is computed as follows:

si, j =
AiA j

⊤

∥Ai∥∥A j∥
,

where Ai is the i-th row of the adjacency matrix, which denotes the neigh-
borhood information of the node vi. si, j is larger when nodes vi and v j share
more common neighbors and it is 0 if vi and v j do not share any neighbors.
Intuitively if vi and v j share many common neighbors, i.e., si, j is large, they
are likely to co-occur in the random walks described in DeepWalk. Hence, this
information has an implicit connection with the co-occurrence. These pairwise
neighborhood similarity relations can be summarized in a matrix S, where the
i, j-th element is si, j. In summary, the extracted information can be denoted by

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

92 Graph Embedding

two matrices A and S.

Reconstructor and Objective
The reconstructor aims to recover these two types of extracted information

in the form of A and S. To reconstruct them simultaneously, it first linearly
combines them as follows:

P = A + η · S,

where η > 0 controls the importance of the neighborhood similarity. Then, the
matrix P is reconstructed from the embedding domain as : WconWT

cen, where
Wcon and Wcen are the parameters of two mapping functions fcon and fcen.
They have the same design as DeepWalk. The objective can be formulated as
follows:

L(Wcon,Wcen) = ∥P −WconWT
cen∥

2
F ,

where ∥ · ∥F denotes the Frobenius norm of a matrix.

Preserving the Community Structure
In a graph, a community consists of a set of nodes, which are densely con-
nected. There often exist multiple communities in a graph. The task of com-
munity detection is to assign nodes in a graph into different communities.
One popular community detection method is based on modularity maximiza-
tion (Newman, 2006). Specifically, assuming that we are given a graph with 2
communities with known node-community assignment, the modularity can be
defined as:

Q =
1

2 · vol(G)

∑
i j

(Ai, j −
d(vi)d(v j)

vol(G)
)hih j,

where d(vi) is the degree of node vi, hi = 1 if node vi belongs to the first
community, otherwise, hi = −1 and vol(G) =

∑
vi∈V

d(vi). In fact, d(vi)d(v j)
vol(G) ap-

proximates the expected number of edges between nodes vi and v j in a ran-
domly generated graph. The randomly generated graph has the same set of
nodes, the same node degree and the same number of edges as G; however, its
edges are randomly placed between nodes. Hence, the modularity Q is defined
based on the difference between the fraction of observed edges that fall within
communities in the original graph and the corresponding expected fraction in
the randomly generated graph. A positive modularity Q suggests the possible
presence of community structure and often a larger modularity Q indicates bet-
ter community structures discovered (Newman, 2006). Hence, to detect good

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.2 Graph Embedding on Simple Graphs 93

communities, we can maximize the modularity Q by finding the proper com-
munity assignments. Furthermore, the modularity Q can be written in a matrix
form as :

Q =
1

2 · vol(G)
hT Bh,

where h ∈ {−1, 1}N is the community assignment vector with the i-th element
h[i] = hi and B ∈ RN×N is defined as :

Bi, j = Ai, j −
d(vi)d(v j)

vol(G)
.

The definition of the modularity can be extended to m > 2 communities.
In detail, the community assignment vector h can be generalized as a ma-
trix H ∈ {0, 1}N×m where each column of H represents a community. The i-th
row of the matrix H is a one-hot vector indicating the community of node vi,
where only one element of this row is 1 and others are 0. Therefore, we have
tr(HT H) = N, where tr(X) denotes the trace of a matrix X. After discarding
some constants, the modularity for a graph with m communities can be defined
as: Q = tr(HT BH). The assignment matrix H can be learned by maximizing
the modularity Q as:

max
H

Q = tr(HT BH), s.t. tr(HT H) = N.

Note that H is a discrete matrix which is often relaxed to be a continuous
matrix during the optimization process.

The Overall Objective
To jointly preserve the node-oriented structure information and the commu-
nity structure information, another matrix C is introduced to reconstruct the
indicator matrix H together with Wcen. As a result, the objective of the entire
framework is as:

min
Wcon,Wcen,H,C

∥P −WconWT
cen∥

2
F + α∥H −WcenCT ∥2F − β · tr(HT BH),

s.t. Wcon ≥ 0,Wcen ≥ 0,C ≥ 0, tr(HT H) = N.

where the term ∥H −WcenCT ∥2F connects the community structure informa-
tion with the node representations, the non-negative constraints are added as
non-negative matrix factorization is adopted by (Wang et al., 2017c) and the
hyperparameters α and β control the balance among three terms.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

94 Graph Embedding

4.3 Graph Embedding on Complex Graphs

In previous sections, we have discussed graph embedding algorithms for sim-
ple graphs. However, as shown in Section 2.6, real-world graphs present much
more complicated patterns, resulting in numerous types of complex graphs. In
this section, we introduce embedding methods for these complex graphs.

4.3.1 Heterogeneous Graph Embedding

In heterogeneous graphs, there are different types of nodes. In (Chang et al.,
2015), a framework HNE was proposed to project different types of nodes
in the heterogeneous graph into a common embedding space. To achieve this
goal, a distinct mapping function is adopted for each type. Nodes are assumed
to be associated with node features that can have different forms (e.g., images
or texts) and dimensions. Thus, different deep models are employed for each
type of nodes to map the corresponding features into the common embedding
space. For example, if the associated feature is in the form of images, CNNs
are adopted as the mapping function. HNE aims to preserve the pairwise con-
nections between nodes. Thus, the extractor in HNE extracts node pairs with
edges as the information to be reconstructed, which can be naturally denoted
by the adjacency matrix A. Hence, the reconstructor is to recover the adjacency
matrix A from the node embeddings. Specifically, given a pair of nodes (vi, v j)
and their embeddings ui,u j learned by the mapping functions, the probability
of the reconstructed adjacency element Ãi, j = 1 is computed as follows:

p(Ãi, j = 1) = σ(u⊤i u j),

where σ is the sigmoid function. Correspondingly,

p(Ãi, j = 0) = 1 − σ(u⊤i u j).

The goal is to maximize the probability such that the reconstructed adjacency
matrix Ã is close to the original adjacency matrix A. Therefore, the objective
is modeled by the cross-entropy as follows:

−

N∑
i, j=1

(
Ai, j log p(Ãi, j = 1) + (1 − Ai, j) log p(Ãi, j = 0)

)
. (4.10)

The mapping functions can be learned by minimizing the objective in Eq. (4.10)
where the embeddings can be obtained. In heterogeneous graphs, different
types of nodes and edges carry different semantic meanings. Thus, for hetero-
geneous network embedding, we should not only care about the structural cor-
relations between nodes but also their semantic correlations. metapath2vec (Dong

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.3 Graph Embedding on Complex Graphs 95

et al., 2017) is proposed to capture both correlations between nodes. Next, we
detail the metapath2vec (Dong et al., 2017) algorithm including its extractor,
reconstructor and objective. Note that the mapping function in metapath2vec
is the same as DeepWalk.

Meta-path based Information Extractor
To capture both the structural and semantic correlations, meta-path based ran-
dom walks are introduced to extract the co-occurrence information. Specif-
ically, meta-paths are employed to constrain the decision of random walks.
Next, we first introduce the concept of meta-paths and then describe how to
design the meta-path based random walk.

Definition 4.5 (Meta-path Schema) Given a heterogeneous graph G as de-
fined in Definition 2.35, a meta-path schema ψ is a meta-template in G denoted

as A1
R1
−−→ A2

R2
−−→ · · ·

Rl
−→ Al+1, where Ai ∈ Tn and Ri ∈ Te denote certain types

of nodes and edges, respectively. The meta path schema defines a composite
relation between nodes from type A1 to type Al+1 where the relation can be
denoted as R = R1 ◦ R2 ◦ · · ·Rl−l ◦ Rl. An instance of a meta-path schema ψ is
a meta-path, where each node and edge in the path follows the corresponding
types in the schema.

Meta-path schema can be used to guide the random walks. A meta-path-
based random walk is a randomly generated instance of a given meta-path
schema ψ. The formal definition of a meta-path based random walk is given
below:

Definition 4.6 Given a meta-path schema ψ : A1
R1
−−→ A2

R2
−−→ · · ·

Rl
−→ Al+1, the

transition probability of a random walk guided by ψ can be computed as:

p(v(t+1)|v(t), ψ) =

1∣∣∣∣NRt

t+1(v(t))
∣∣∣∣ , if v(t+1) ∈ N

Rt
t+1(v(t)),

0, otherwise,

where v(t) is a node of type At, corresponding to the position of At in the meta-
path schema.NRt

t+1(v(t)) denotes the set of neighbors of v(t) which have the node
type At+1 and connect to v(t) through edge type Rt. It can be formally defined
as:

N
Rt
t+1(v(t)) = {v j | v j ∈ N(v(t)) and ϕn(v j) = At+1 and ϕe(v(t), v j) = Rt}.

where ϕn(v j) is a function to retrieve the type of node v j and ϕe(v(t), v j) is a
function to retrieve the type of edge (v(t), v j) as introduced in Definition 2.35.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

96 Graph Embedding

Then, we can generate random walks under the guidance of various meta-
path schemas from which co-occurrence pairs can be extracted in the same way
as that in Section 4.2.1. Likewise, we denote tuples extracted from the random
walks in the form of (vcon, vcen) as I.

Reconstructor
There are two types of reconstructors proposed in (Dong et al., 2017). The first
one is the same as that for DeepWalk (or Eq. (4.2)) in Section 4.2.1. The other
reconstorctor is to define a multinomial distribution for each type of nodes
instead of a single distribution over all nodes as Eq. (4.2). For a node v j with
type nt, the probability of observing v j given vi can be computed as follows:

p(v j|vi) =
exp(fcon(v j)⊤ fcen(vi))∑

v∈Vnt

exp(fcon(v) f⊤cen(vi))
,

where Vnt is a set consisting of all nodes with type nt ∈ Tn. We can adopt
either of the two reconstructors and then construct the objective in the same
way as that of DeepWalk in Section 4.2.1.

4.3.2 Bipartite Graph Embedding

As defined in Definition 2.36, in bipartite graphs, there are two disjoint sets
of nodes V1 and V2, and no edges are existing within these two sets. For
convenience, we useU andV to denote these two disjoint sets. In (Gao et al.,
2018b), a bipartite graph embedding framework BiNE is proposed to capture
the relations between the two sets and the relations within each set. Especially,
two types of information are extracted: 1) the set of edges E, which connect
the nodes from the two sets, and 2) the co-occurrence information of nodes
within each set. The same mapping function as DeepWalk is adopted to map
the nodes in the two sets to the node embeddings. We use ui and vi to denote
the embeddings for nodes ui ∈ U and vi ∈ V, respectively. Next, we introduce
the information extractor, reconstructor and the objective for BiNE.

Information Extractor
Two types of information are extracted from the bipartite graph. One is the
edges between the nodes from the two node sets, denoted as E. Each edge
e ∈ E can be represented as (u(e), v(e)) with u(e) ∈ U and v(e) ∈ V. The
other is the co-occurrence information within each node set. To extract the
co-occurrence information in each node set, two homogeneous graphs withU

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.3 Graph Embedding on Complex Graphs 97

and V as node sets are induced from the bipartite graph, respectively. Specif-
ically, if two nodes are 2-hop neighbors in the original graph, they are con-
nected in the induced graphs. We use GU and GV to denote the graphs induced
for node setsV andU, respectively. Then, the co-occurrence information can
be extracted from the two graphs in the same way as DeepWalk. We denote
the extracted co-occurrence information as IU and IV, respectively. There-
fore, the information to be reconstructed includes the set of edges E and the
co-occurrence information forU andV.

Reconstructor and Objective
The reconstructor to recover the co-occurrence information in U and V from
the embeddings is the same as that for DeepWalk. We denote the two objectives
for re-constructing IU and IV as LU and LV, respectively. To recover the set
of edges E, we model the probability of observing the edges based on the
embeddings. Specifically, given a node pair (ui, v j) with ui ∈ U and v j ∈ V,
we define the probability that there is an edge between the two nodes in the
original bipartite graph as:

p(ui, u j) = σ(u⊤i v j),

where σ is the sigmoid function. The goal is to learn the embeddings such that
the probability for the node pairs of edges in E can be maximized. Thus, the
objective is defined as

LE = −
∑

(ui,v j)∈E

log p(ui, v j).

The final objective of BiNE is as follows:

L = LE + η1LU + η2LV,

where η1 and η2 are the hyperparameters to balance the contributions for dif-
ferent types of information.

4.3.3 Multi-dimensional Graph Embedding

In a multi-dimensional graph, all dimensions share the same set of nodes, while
having their own graph structures. For each node, we aim to learn (1) a gen-
eral node representation, which captures the information from all the dimen-
sions and (2) a dimension specific representation for each dimension, which
focuses more on the corresponding dimension (Ma et al., 2018d). The general
representations can be utilized to perform general tasks such as node classifi-
cation which requires the node information from all dimensions. Meanwhile,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

98 Graph Embedding

the dimension-specific representation can be utilized to perform dimension-
specific tasks such as link prediction for a certain dimension. Intuitively, for
each node, the general representation and the dimension-specific representa-
tion are not independent. Therefore, it is important to model their dependence.
To achieve this goal, for each dimension d, we model the dimension-specific
representation ud,i for a given node vi as

ud,i = ui + rd,i, (4.11)

where ui is the general representation and rd,i is the representation capturing
information only in the dimension d without considering the dependence. To
learn these representations, we aim to reconstruct the co-occurrence relations
in different dimensions. Specifically, we optimize mapping functions for ui

and rd,i by reconstructing the co-occurrence relations extracted from differ-
ent dimensions. Next, we introduce the mapping functions, the extractor, the
reconstructor and the objective for the multi-dimensional graph embedding.

The mapping functions
The mapping function for the general representation is denoted as f (), while
the mapping function for a specific dimension d is fd(). Note that all the
mapping functions are similar to that in DeepWalk. They are implemented as
looking-up tables as follows

ui = f (vi) = e⊤i W,

rd,i = fd(vi) = e⊤i Wd, d = 1 . . . ,D,

where D is the number of dimensions in the multi-dimensional graph.

Information Extractor
We extract co-occurrence relations for each dimension d as Id using the co-
occurrence extractor introduced in Section 4.2.1. The co-occurrence informa-
tion of all dimensions is the union of that for each dimension as follows:

I = ∪D
d=1Id.

The Reconstructor and Objective
We aim to learn the mapping functions such that the probability of the co-
occurrence I can be well reconstructed. The reconstructor is similar to that in
DeepWalk. The only difference is that the reconstructor is now applied to the
extracted relations from different dimensions. Correspondingly, the objective

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.3 Graph Embedding on Complex Graphs 99

can be stated as follows:

min
W,W1,...,WD

−

D∑
d=1

∑
(vcon,vcen)∈Id

#(vcon, vcen) · log p(vcon|vcen), (4.12)

where W,W1, . . . ,WD are the parameters of the mapping functions to be learned.
Note that in (Ma et al., 2018d), for a given node, the same representation is
used for both the center and the context representations.

4.3.4 Signed Graph Embedding

In signed graphs, there are both positive and negative edges between nodes, as
introduced in Definition 2.38. Structural balance theory is one of the most im-
portant social theories for signed graphs. A signed graph embedding algorithm
SiNE based on structural balance theory is proposed (Wang et al., 2017b). As
suggested by balance theory (Cygan et al., 2012), nodes should be closer to
their “friends” (or nodes with positive edges) than their “foes” (or nodes with
negative edges). For example, in Figure 4.4, v j and vk can be regarded as the
“friend” and “foe” of vi, respectively. SiNE aims to map “friends” closer than
“foes” in the embedding domain, i.e., mapping v j closer than vk to vi. Hence,
the information to preserve by SiNE is the relative relations between “friends”
and “foes”. Note that the mapping function in SiNE is the same as that in Deep-
Walk. Next, we first describe the information extractor and then introduce the
reconstructor.

Information Extractor
The information to preserve can be represented as a triplet (vi, v j, vk) as shown
in Figure 4.4, where nodes vi and v j are connected by a positive edge while
nodes vi and vk are connected by a negative edge. Let I1 denote a set of these
triplets in a signed graph, which can be formally defined as:

I1 =
{(

vi, v j, vk

)
|Ai, j = 1, Ai,k = −1, vi, v j, vk ∈ V

}
,

where A is the adjacency matrix of the signed graph as defined in Defini-
tion 2.38. In the triplet

(
vi, v j, vk

)
, the node v j is supposed to be more similar

to vi than the node vk according to balance theory. For a given node v, we de-
fine its 2-hop subgraph as the subgraph formed by the node v, nodes that are
within 2-hops of v and all the edges between these nodes. In fact, the extracted
information I1 does not contain any information for a node v whose 2-hop
subgraph has only positive or negative edges. In this case, all triplets involving
v contain edges with the same sign as illustrated in Figure 4.5. Thus, we need

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

100 Graph Embedding

𝑣"

𝑣#

𝑣$

+

−

Figure 4.4 A triplet consists of a positive edge and a negative edge

𝑣"

𝑣#

𝑣$

+

+

(a) A triplet with only positive edges

𝑣"

𝑣#

𝑣$

−

−

(b) A triplet with only negative edges

Figure 4.5 Triplets with edges of the same sign

to specify the information to preserve for these nodes in order to learn their
representations.

It is evident that the cost of forming negative edges is higher than that of
forming positive edges (Tang et al., 2014b). Therefore, in social networks,
many nodes have only positive edges in their 2-hop subgraphs while very few
have only negative edges in their 2-hop subgraphs. Hence, we only consider to
handle nodes whose 2-hop subgraphs have only positive edges, while a similar
strategy can be applied to deal with the other type of nodes. To effectively cap-
ture the information for these nodes, we introduce a virtual node v0 and then
create negative edges between the virtual node v0 and each of these nodes. In
this way, such triplet (vi, v j, vk) as shown in Figure 4.5a can be split into two
triplets (vi, v j, v0) and (vi, vk, v0) as shown in Figure 4.6. Let I0 denote all these
edges involving the virtual node v0. The information we extract can be denoted
as I = I1 ∪ I0.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.3 Graph Embedding on Complex Graphs 101

𝑣"

𝑣#

𝑣$

+

−

(a)

𝑣"

𝑣#

𝑣$

+

−

(b)

Figure 4.6 Expanding triplet in Figure 4.5a with a virtual node

Reconstructor
To reconstruct the information of a given triplet, we aim to infer the relative
relations of the triplet based on the node embeddings. For a triplet

(
vi, v j, vk

)
,

the relative relation between vi, v j and vk can be mathematically reconstructed
using their embeddings as follows:

s
(

f (vi), f (v j)
)
− (s (f (vi), f (vk)) + δ)) (4.13)

where f () is the same mapping function as that in Eq.(4.1). The function s(·, ·)
measures the similarity between two given node representations, which is mod-
eled with feedforward neural networks. Eq. (4.13) larger than 0 suggests that
vi is more similar to v j than vk. The parameter δ is a threshold to regulate the
difference between the two similarities. For example, a lager δ means that vi

and v j should be much more similar with each other than vi and vk to make
Eq. (4.13) larger than 0. For any triplet

(
vi, v j, vk

)
in I, we expect Eq.(4.13) to

be larger than 0 such that the relative information can be preserved, i.e., vi and
v j connected with a positive edge are more similar than vi and vk connected
with a negative edge.

The Objective
To ensure that the information in I can be preserved by node representations,
we need to optimize the mapping function such that Eq.(4.13) can be larger
than 0 for all triplets in I. Hence, the objective function can be defined as

102 Graph Embedding

follows:

min
W,Θ

1
|I0| + |I1|

[
∑

(vi,v j,vk)∈I1

max
(
0, s(f (vi), f (vk)) + δ − s(f (vi), f (v j))

)
+

∑
(vi,v j,v0)∈I0

max
(
(0, s(f (vi), f (v0)) + δ0 − s(f (vi), f (v j))

)
+α(R(Θ) + ∥W∥2F)]

where W is the parameters of the mapping function, Θ denotes the parameters
of s(·, ·) and R(Θ) is the regularizer on the parameters. Note that, we use differ-
ent parameters δ and δ0 for I1 and I0 to flexibly distinguish the triplets from
the two sources.

4.3.5 Hypergraph Embedding

In a hypergraph, a hyperedge captures relations between a set of nodes, as in-
troduced in Section 2.6.5. In (Tu et al., 2018), a method DHNE is proposed to
learn node representations for hypergraphs by utilizing the relations encoded
in hyperedges. Specifically, two types of information are extracted from hyper-
edges that are reconstructed by the embeddings. One is the proximity described
directly by hyperedges. The other is the co-occurrence of nodes in hyperedges.
Next, we introduce the extractor, the mapping function, the reconstructor and
the objective of DHNE.

Information Extractor
Two types of information are extracted from the hypergraph. One is the hy-
peredges. The set of hyperedges denoted as E directly describes the relations
between nodes. The other type is the hyperedge co-occurrence information.
For a pair of nodes vi and v j, the frequency they co-occur in hyperedges indi-
cates how strong their relation is. The hyperedge co-occurrence between any
pair of nodes can be extracted from the incidence matrix H as follows:

A = HH⊤ − Dv

where H is the incidence matrix and Dv is the diagonal node degree matrix as
introduced in Definition 2.39. The i, j-th element Ai, j indicates the number of
times that nodes vi and v j co-occurr in hyperedges. For a node vi, the i-th row
of A describes its co-occurrence information with all nodes in the graph (or the
global information of node vi). In summary, the extracted information includes
the set of hyperedges E and the global co-occurrence information A.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.3 Graph Embedding on Complex Graphs 103

The Mapping Function
The mapping function is modeled with multi-layer feed forward networks with
the global co-occurrence information as the input. Specifically, for node vi, the
process can be stated as:

ui = f (Ai;Θ),

where f denotes the feedforward networks with Θ as its parameters.

Reconstructor and Objective
There are two reconstructors to recover the two types of extracted informa-
tion, respectively. We first describe the reconstructor to recover the set of hy-
peredges E and then introduce the reconstructor for the co-occurrence infor-
mation A. To recover the hyperedge information from the embeddings, we
model the probability of a hyperedge existing between any given set of nodes
{v(1), . . . , v(k)} and then aim to maximize the probability for those hyperedges
in E. For convenience, in (Tu et al., 2018), all hyperedges are assumed to have
a set of k nodes. The probability that a hyperedge exists in a given set of nodes
Vi = {vi

(1), . . . , v
i
(k)} is defined as:

p(1|Vi) = σ
(
g([ui

(1), . . . ,u
i
(k)])

)
where g() is a feedforward network that maps the concatenation of the node
embeddings to a single scalar and σ() is the sigmoid function that transforms
the scalar to the probability. Let Ri denote the variable to indicate whether
there is a hyperedge between the nodes in Vi in the hypergraph where Ri = 1
denotes that there is an hyperedge while Ri = 0 means no hyperedge. Then the
objective is modeled based on cross-entropy as:

L1 = −
∑

Vi∈E∪E′

Ri log p(1|Vi) + (1 − Ri) log(1 − p(1|Vi)),

where E′ is a set of negative “hyperedges” that are randomly generated to serve
as negative samples. Each of the negative “hyperedge” Vi ∈ E′ consists of a
set of k randomly sampled nodes.

To recover the global co-occurrence information Ai for node vi, a feedfor-
ward network, which takes the embedding ui as input, is adopted as:

Ãi = fre(ui;Θre),

where fre() is the feedforward network to reconstruct the co-occurrence in-
formation with Θre as its parameters. The objective is then defined with least

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

104 Graph Embedding

square as:

L2 =
∑
vi∈V

∥Ai − Ãi∥
2
2.

The two objectives are then combined to form the objective for the entire net-
work embdding framework as:

L = L1 + ηL2,

where η is a hyperparameter to balance the two objectives.

4.3.6 Dynamic Graph Embedding

In dynamic graphs, edges are associated with timestamps which indicate their
emerging time as introduced in Section 2.6.6. It is vital to capture the temporal
information when learning the node representations. In (Nguyen et al., 2018),
temporal random walk is proposed to generate random walks that capture tem-
poral information in the graph. The generated temporal random walks are
then employed to extract the co-occurrence information to be reconstructed.
Since its mapping function, reconstructor and objective are the same as those
in DeepWalk, we mainly introduce the temporal random walk and the corre-
sponding information extractor.

Information Extractor
To capture both the temporal and the graph structural information, the temporal
random walk is introduced in (Nguyen et al., 2018). A valid temporal random
walk consists of a sequence of nodes connected by edges with non-decreasing
time stamps. To formally introduce temporal random walks, we first define the
set of temporal neighbors for a node vi at a given time t as:

Definition 4.7 (Temporal Neighbors) For a node vi ∈ V in a dynamic graph
G, its temporal neighbors at time t are those nodes connected with vi after time
t. Formally, it can be expressed as follows:

N(t)(vi) = {v j|(vi, v j) ∈ E and ϕe((vi, v j)) ≥ t}

where ϕe((vi, v j)) is the temporal mapping function. It maps a given edge to its
associated time as defined in Definition 2.40.

The temporal random walks can then be stated as follows:

Definition 4.8 (Temporal Random Walks) Let G = {V,E, ϕe} be a dynamic
graph where ϕe is the temporal mapping function for edges. We consider a
temporal random walk starting from a node v(0) with (v(0), v(1)) as its first edge.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

4.4 Conclusion 105

Assume that at the k-th step, it just proceeds from node v(k−1) to node v(k) and
now we choose the next node from the temporal neighbors N(ϕe((v(k−1),v(k))))(v(k))
of node v(k) with the following probability:

p(v(k+1)|v(k)) =

pre(v(k+1)) if v(k+1) ∈ N(ϕe((v(k−1),v(k))))(v(k))

0, otherwise,

where pre(v(k+1)) is defined below where nodes with smaller time gaps to the
current time are chosen with higher probability:

pre(v(k+1)) =
exp

[
ϕe((v(k−1), v(k))) − ϕe((v(k), v(k+1)))

]
∑

v(j)∈N(ϕe ((v(k−1) ,v(k))))(v
(k))

exp
[
ϕe((v(k−1), v(k))) − ϕe((v(k), v(j)))

] .
A temporal random walk naturally terminates itself if there are no tempo-

ral neighbors to proceed. Hence, instead of generating random walks of fixed
length as DeepWalk, we generate temporal random walks with length between
the window size w for co-occurrence extraction and a pre-defined length T .
These random walks are leveraged to generate the co-occurrence pairs, which
are reconstructed with the same reconstructor as DeepWalk.

4.4 Conclusion

In this chapter, we introduce a general framework and a new perspective to
understand graph embedding methods in a unified way. It mainly consists of
four components including: 1) a mapping function, which maps nodes in a
given graph to their embeddings in the embedding domain; 2) an informa-
tion extractor, which extracts information from the graphs; 3) a reconstructor,
which utilizes the node embeddings to reconstruct the extracted information;
and 4) an objective, which often measures the difference between the extracted
and reconstructed information. The embeddings can be learned by optimiz-
ing the objective. Following the general framework, we categorize graph em-
bedding methods according to the information they aim to preserve including
co-occurrence based, structural role based, global status based and community
based methods and then detail representative algorithms in each group. Be-
sides, under the general framework, we also introduce representative embed-
ding methods for complex graphs, including heterogeneous graphs, bipartite
graphs, multi-dimensional graphs, signed graphs, hypergraphs, and dynamic
graphs.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

106 Graph Embedding

4.5 Further Reading

There are embedding algorithms preserving the information beyond what we
have discussed above. In (Rossi et al., 2018), motifs are extracted and are pre-
served in node representations. A network embedding algorithm to preserve
asymmetric transitivity information is proposed in (Ou et al., 2016) for di-
rected graphs. In (Bourigault et al., 2014), node representations are learned to
model and predict information diffusion. For complex graphs, we only intro-
duce the most representative algorithms. However, there are more algorithms
for each type of complex graphs including heterogeneous graphs (Chen and
Sun, 2017; Shi et al., 2018a; Chen et al., 2019b), bipartite graphs (Wang et al.,
2019j; He et al., 2019), multi-dimensional graphs (Shi et al., 2018b), signed
graphs (Yuan et al., 2017; Wang et al., 2017a), hypergraphs (Baytas et al.,
2018) and dynamic graphs (Li et al., 2017a; Zhou et al., 2018b). Besides, there
are quite a few surveys on graph embedding (Hamilton et al., 2017b; Goyal
and Ferrara, 2018; Cai et al., 2018; Cui et al., 2018)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5
Graph Neural Networks

5.1 Introduction

Graph Neural Networks (GNNs) are a set of methods that aim to apply deep
neural networks to graph-structured data. The classical deep neural networks
cannot be easily generalized to graph-structured data as the graph structure is
not a regular grid. The investigation of graph neural networks can date back to
the early of the 21st century, when the first GNN model (Scarselli et al., 2005,
2008) was proposed for both node- and graph-focused tasks. When deep learn-
ing techniques gained enormous popularity in many areas, such as computer
vision and natural language processing, researchers started to dedicate more
efforts to this research area.

Graph neural networks can be viewed as a process of representation learning
on graphs. For node-focused tasks, GNNs target on learning good features for
each node such that node-focused tasks can be facilitated. For graph-focused
tasks, they aim to learn representative features for the entire graph where learn-
ing node features is typically an intermediate step. The process of learning
node features usually leverages both the input node features and the graph
structure. More specifically, this process can be summarized as follows:

F(of) = h(A,F(if)) (5.1)

where A ∈ RN×N denotes the adjacency matrix of the graph with N nodes (i.e.,
the graph structure) and F(if) ∈ RN×dif and F(of) ∈ RN×dof denote the input and
output feature matrices where dif and dof are their dimensions, respectively. In
this book, we generally refer to the process that takes node features and graph
structure as input and outputs a new set of node features as graph filtering
operation. The superscripts (or subscripts) “if” and “of” in Eq. (5.1) denote
the input of filtering and the output of filtering, receptively. Correspondingly,
the operator h(·, ·) is called as a graph filter. Figure 5.1 illustrates a typical

107

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

108 Graph Neural Networks

Graph Filtering

Figure 5.1 Graph filtering operation

graph filtering process where the filtering operation does not change the graph
structure, but it only refines the node features.

For node-focused tasks, the graph filtering operation is sufficient, and mul-
tiple graph filtering operations are usually stacked consecutively to generate
final node features. However, other operations are necessary for graph-focused
tasks to generate the features for the entire graph from the node features. Simi-
lar to the classical CNNs, pooling operations are proposed to summarize node
features to generate graph-level features. The classical CNNs are applied to
data residing on regular grids. However, the graph structure is irregular, which
calls for dedicated pooling operations in graph neural networks. Intuitively,
pooling operations on graphs should utilize the graph structure information to
guide the pooling process. In fact, pooling operations often take a graph as
input and then produce a coarsened graph with fewer nodes. Thus, the key
to pooling operations is to generate the graph structure (or the adjacency ma-
trix) and the node features for the coarsened graph. In general, as shown in
Figure 5.2, a graph pooling operation can be described as follows:

A(op),F(op) = pool(A(ip),F(ip)) (5.2)

where A(ip) ∈ RNip×Nip , F(ip) ∈ RNip×dip and A(op) ∈ RNop×Nop , F(op) ∈ RNop×dop

are the adjacency matrices and feature matrices before and after the pooling
operation, respectively. Similarly the superscripts (or subscripts) “ip” and “op”
are used to indicate the input of pooling and the output of pooling, receptively.
Note that Nop denotes the number of nodes in the coarsened graph and Nop <

Nip.
The architecture of a typical graph neural network model consists of graph

filtering and/or graph pooling operations. For node-focused tasks, GNNs only
utilize graph filtering operations. They are often composed with multiple con-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.2 The General GNN Frameworks 109

Graph Pooling

Figure 5.2 Graph pooling operation

secutive graph filtering layers where the output of the previous layer is the
input for the following consecutive layer. For graph-focused tasks, GNNs re-
quire both the graph filtering and the graph pooling operations. Pooling layers
usually separate the graph filtering layers into blocks. In this chapter, we first
briefly introduce general architectures for GNNs and then provide the details
of representative graph filtering and graph pooling operations.

5.2 The General GNN Frameworks

In this section, we introduce the general frameworks of GNNs for both node-
focused and graph-focused tasks. We first introduce some notations that we
use through the following sections. We denote a graph as G = {V,E}. The
adjacency matrix of the graph with N nodes is denoted as A. The associated
features are represented as F ∈ RN×d. Each row of F corresponds to a node,
and d is the dimension of the features.

5.2.1 A General Framework for Node-focused Tasks

A general framework for node-focused tasks can be regarded as a composition
of graph filtering and non-linear activation layers. A GNN framework with L
graph filtering layers and L − 1 activation layers (see Section 3.2.2 for rep-
resentative activation functions) is shown in Figure 5.3, where hi() and αi()
denote the i-th graph filtering layer and activation layer, respectively. We use
F(i) to denote the output of the i-th graph filtering layer. Specifically, F(0) is
initialized to be the associated features F. Furthermore, we use di to indicate
the dimension of the output of the i-th graph filtering layer. Since the graph
structure is unchanged, we have F(i) ∈ RN×di . The i-th graph filtering layer can

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

110 Graph Neural Networks

…

ℎ" 𝑎" ℎ$ 𝑎$ ℎ% 𝑎% ℎ%&"

Filtering Layer Activation

Figure 5.3 A general GNN architecture for node-focused tasks

be described as:

F(i) = hi

(
A, αi−1

(
F(i−1)

))
where αi−1() is the element-wise activation function following the (i−1)-th
graph filtering layer. Note that we abuse the notation a little bit to use α0 to
denote the identity function as we do not apply the activation on the input fea-
tures. The final output F(L) is leveraged as the input to some specific layers
according to the downstream node-focused tasks.

5.2.2 A General Framework for Graph-focused Tasks

A general GNN framework for graph-focused tasks consists of three types of
layers, i.e., the graph filtering layer, the activation layer, and the graph pooling
layer. The graph filtering layer and the activation layer in the framework have
similar functionalities as those in the node-focused framework. They are used
to generate better node features. The graph pooling layer is utilized to sum-
marize the node features and generate higher-level features that can capture
the information of the entire graph. Typically, a graph pooling layer follows a
series of graph filtering and activation layers. A coarsened graph with more ab-
stract and higher-level node features is generated after the graph pooling layer.
These layers can be organized into a block as shown in Figure 5.4 where hi,
αi and p denote the i-th filtering layer, the i-th activation layer and the pool-
ing layer in this block. The input of the block is the adjacency matrix A(ib)

and the features F(ib) of a graph Gib = {Vib,Eib} and the output is the newly

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.2 The General GNN Frameworks 111

…

ℎ" 𝑎" ℎ$ 𝑎$

Filtering Layer Activation

𝑝

Pooling Layer

Figure 5.4 A block in GNNs for graph-focused tasks

generated adjacency matrix A(ob) and the features F(ob) for the coarsened graph
Gob = {Vob,Eob}. The computation procedure of a block is formally stated as
follows:

F(i) = hi(A(ib), αi−1(F(i−1))) for i = 1, . . . k,

A(ob),F(ob) = p(A(ib),F(k)), (5.3)

where αi is the activation function for i , 0 where α0 is the identity function
and F(0) = Fib . We can summarize the above computation process of a block
as follows:

A(ob),F(ob) = B(A(ib),F(ib)).

The entire GNN framework can consist of one or more of these blocks as
shown in Figure 5.5. The computation process of the GNN framework with L
blocks can be formally defined as follows:

A(j),F(j) = B(j)(A(j−1),F(j−1)) for j = 1, . . . , L. (5.4)

where F(0) = F and A(0) = A are the initial node features and the adjacency ma-
trix of the original graph, respectively. Note that the output of one block is uti-
lized as the input for the consecutively following block as shown in Eq. (5.4).
When there is only one block (or L = 1), the GNN framework can be re-
garded as flat since it directly generates graph-level features from the original
graph. The GNN framework with pooling layers can be viewed as a hierarchi-
cal process when L > 1, where the node features are gradually summarized to

112 Graph Neural Networks

…
ℎ"" 𝑎"" ℎ$" 𝑎$" 𝑝"

…
ℎ"& 𝑎"& ℎ$& 𝑎$& 𝑝&

…

𝐵" 𝐵&

Filtering Layer Activation Pooling Layer

Figure 5.5 Architectures of GNNs for graph-focused tasks

form the graph features by subsequently generating more and more coarsened
graphs.

5.3 Graph Filters

There are various perspectives to design graph filters, which can be roughly
split into two categories: 1) spatial-based graph filters and 2) spectral-based
graph filters. The spatial-based graph filters explicitly leverage the graph struc-
ture (i.e., the connections between the nodes) to perform the feature refining
process in the graph domain. In contrast, the spectral-based graph filters utilize
spectral graph theory to design the filtering operation in the spectral domain.
These two categories of graph filters are closely related. Especially, some of
the spectral-based graph filters can be regarded as spatial-based filters. In this
section, we introduce spectral-based graph filters and explain how some of the
spectral-based graph filters can be viewed from a spatial perspective. We then
discuss more spatial-based graph filters.

5.3.1 Spectral-based Graph Filters

The spectral-based graph filters are designed in the spectral domain of graph
signals. We first introduce the graph spectral filtering and then describe how it
can be adopted to design spectral-based graph filters.

Graph Spectral Filtering
As shown in Figure 5.6, the idea of the graph spectral filtering is to modulate
the frequencies of a graph signal such that some of its frequency components

5.3 Graph Filters 113

are kept/amplified while others are removed/diminished. Hence, given a graph
signal f ∈ RN , we need first to apply Graph Fourier Transform (GFT) on it
to obtain its graph Fourier coefficients, and then modulate these coefficients
before reconstructing the signal in the spatial domain.

As introduced in Chapter 2, for a signal f ∈ RN defined on a graph G, its
Graph Fourier Transform is defined as follows:

f̂ = U⊤f,

where U consists of eigenvectors of the Laplacian matrix of G and f̂ is the
obtained graph Fourier coefficients for the signal f. These graph Fourier coef-
ficients describe how each graph Fourier component contributes to the graph
signal f. Specifically, the i-th element of f̂ corresponds to the i-th graph Fourier
component ui with the frequency λi. Note that λi is the eigenvalue correspond-
ing to ui. To modulate the frequencies of the signal f, we filter the graph Fourier
coefficients as follows:

f̂′[i] = f̂[i] · γ(λi), for i = 1, . . . ,N.

where γ(λi) is a function with the frequency λi as input which determines how
the corresponding frequency component should be modulated. This process
can be expressed in a matrix form as follows:

f̂′ = γ(Λ) · f̂ = γ(Λ) · U⊤f,

where Λ is a diagonal matrix consisting of the frequencies (eigenvalues of the
Laplacian matrix) and γ(Λ) is applying the function γ() to each element in the
diagonal of Λ. Formally, Λ and γ(Λ) can be represented as follows:

Λ =

λ1 0

. . .

0 λN

 ; γ(Λ) =

γ(λ1) 0

. . .

0 γ(λN)

 .
With the filtered coefficients, we can now reconstruct the signal to the graph

domain using the Inverse Graph Fourier Transform (IGFT) as follows:

f′ = Uf̂′ = U · γ(Λ) · U⊤f, (5.5)

where f′ is the obtained filtered graph signal. The filtering process can be re-
garded as applying the operator U · γ(Λ) · U⊤ to the input graph signal. For
convenience, we sometimes refer the function γ(Λ) as the filter since it con-
trols how each frequency component of the graph signal f is filtered. For exam-
ple, in the extreme case, if γ(λi) equals to 0, then, f̂′[i] = 0 and the frequency
component ui is removed from the graph signal f.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

114 Graph Neural Networks

𝑓 𝑈!𝑓 𝑔$(Λ)𝑈!𝑓 𝑈𝑔$(Λ)𝑈!𝑓
𝐺𝐹𝑇 𝐼𝐺𝐹𝑇𝑔"(Λ)

FilterDecompose Reconstruct

Coefficients Filtered coefficients

Figure 5.6 The Process of Spectral Filtering

Example 5.1 (Shuman et al., 2013) Suppose that we are given a noisy graph
signal y = f0 + η defined on a graph G, where η is uncorrelated additive Gaus-
sian noise, we wish to recover the original signal f0. The original signal f0 is
assumed to be smooth with respect to the underlying graph G. To enforce this
prior information of the smoothness of the clean signal f0, a regularization term
of the form f⊤Lf is included in the optimization problem as follows:

arg min
f
∥f − y∥2 + cf⊤Lf, (5.6)

where c > 0 is a constant to control the smoothness. The objective is convex;
hence, the optimal solution f′ can be obtained by setting its derivative to 0 as
follows:

2(f − y) + 2cLf = 0

⇒(I + cL)f = y
⇒(UU⊤ + cUΛU⊤)f = y
⇒U(I + cΛ)U⊤f = y
⇒f′ = U(I + cΛ)−1U⊤y. (5.7)

Comparing Eq. (5.7) with Eq. (5.5), we can find that the cleaner signal is ob-
tained by filtering the noisy signal y with the filter γ(Λ) = (I + cΛ)−1. For a
specific frequency λl, the filter can be expressed as follows:

γ(λl) =
1

1 + cλl
, (5.8)

which clearly indicates that γ(λl) is a low-pass filter since γ(λl) is large when
λl is small and it is small when λl is large. Hence, solving the optimization
problem in Eq.(5.6) is equivalent to applying the low-pass filter in Eq. (5.8) to
the noisy signal y.

Spectral-based Graph Filters
We have introduced the graph spectral filtering operator, which can be used to
filter certain frequencies in the input signal. For example, if we want to get a
smooth signal after filtering, we can design a low-pass filter, where γ(λ) is large

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.3 Graph Filters 115

when λ is small, and it is small when λ is large. In this way, the obtained filtered
signal is smooth since it majorly contains the low-frequency part of the input
signal. An example of the low-pass filter is shown in Example 5.1. If we know
how we want to modulate the frequencies in the input signal, we can design
the function γ(λ) in a corresponding way. However, when utilizing the spectral-
based filter as a graph filter in graph neural networks, we often do not know
which frequencies are more important. Hence, just like the classical neural
networks, the graph filters can be learned in a data-driven way. Specifically,
we can model γ(Λ) with certain functions and then learn the parameters with
the supervision from data.

A natural attempt is to give full freedom when designing γ() (or a non-
parametric model). In detail, the function γ() is defined as follows (Bruna et al.,
2013):

γ(λl) = θl,

where θl is a parameter to be learned from the data. It can also be represented
in a matrix form as follows:

γ(Λ) =

θ1 0

. . .

0 θN

 .
However, there are some limitations with this kind of filter. First, the number
of parameters to be learned is equal to the number of nodes N, which can
be extremely large in real-world graphs. Hence, it requires lots of memory to
store these parameters and also abundant data to fit them. Second, the filter
U ·γ(Λ) ·U⊤ is likely to be a dense matrix. Therefore, the calculation of the i-th
element of the output signal f′ could relate to all the nodes in the graph. In other
words, the operator is not spatially localized. Furthermore, the computational
cost for this operator is quite expensive due to the eigendecomposition of the
Laplacian matrix and the matrix multiplication between dense matrices when
calculating U · γ(Λ) · U⊤.

To address these issues, a polynomial filter operator, which we denoted as
Poly-Filter, is proposed in (Defferrard et al., 2016). The function γ() can be
modeled with a K-order truncated polynomial as follows:

γ(λl) =
K∑

k=0

θkλ
k
l . (5.9)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

116 Graph Neural Networks

In terms of the matrix form, it can be rewritten as below:

γ(Λ) =
K∑

k=0

θkΛ
k. (5.10)

Clearly, the number of the parameters in Eq. (5.9) and Eq. (5.10) is K + 1,
which is not dependent on the number of nodes in the graph. Furthermore,
we can show that U · γ(Λ) · U⊤ can be simplified to be a polynomial of the
Laplacian matrix. It means that: 1) no eigendecomposition is needed; and 2)
the polynomial parametrized filtering operator is spatially localized, i.e., the
calculation of each element of the output f′ only involves a small number of
nodes in the graph. Next, we first show that the Poly-Filter operator can be
formulated as a polynomial of the Laplacian matrix and then understand it
from a spatial perspective.

By applying this Poly-Filter operator on f, according to Eq. (5.5), we can
get the output f′ as follows:

f′ = U · γ(Λ) · U⊤f

= U ·
K∑

k=0

θkΛ
k · U⊤f

=

K∑
k=0

θkU · Λk · U⊤f. (5.11)

To further simplify Eq. (5.11), we first show that U · Λk · U⊤ = Lk as follows:

U · Λk · U⊤ = U · (ΛU⊤U)kU⊤

= (U · Λ · U⊤) · · · (U · Λ · U⊤)︸ ︷︷ ︸
k

= Lk. (5.12)

With Eq. (5.12), we can now simplify Eq. (5.11) as follows:

f′ =
K∑

k=0

θkU · Λk · U⊤f

=

K∑
k=0

θkLkf.

The polynomials of the Laplacian matrix are all sparse. Meanwhile, the i, j-th
(i , j) element of Lk is non-zero only when the length of the shortest path
between node vi and node v j, i.e., dis(vi, v j), is less or equal to k as described
in the following lemma.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.3 Graph Filters 117

Lemma 5.2 Let G be a graph and L be its Laplacian matrix. Then, the i, j-th
element of the k-th power of the Laplacian matrix Lk

i, j = 0 if dis(vi, v j) > k.

Proof We prove this Lemma by induction. When k = 1, by the definition
of the Laplacian matrix L, we naturally have that Li, j = 0 if dis(vi, v j) > 1.
Assume for k = n, we have that Ln

i, j = 0 if dis(vi, v j) > n. We proceed to prove
that for k = n + 1, we have Ln+1

i, j = 0 if dis(vi, v j) > n + 1. Specifically, the
element Ln+1

i, j can be represented using Ln and L as:

Ln+1
i, j =

N∑
h=1

Ln
i,hLh, j.

We next show that Ln
i,hLh, j = 0 for h = 1, . . . ,N, which indicates that Ln+1

i, j = 0.
If Lh, j , 0, then dis(vh, v j) ≤ 1, i.e., either h = j or there is an edge between

node vi and node v j. If we have d(vi, vh) ≤ n, then, with dis(vi, v j) ≤ 1, we have
dis(vi, v j) ≤ n + 1, which contradicts the assumption. Hence, dis(vi, vh) > n
must hold. Thus, we have Ln

i,h = 0, which means Ln
i,hLh, j = 0.

If Lh, j = 0, then Ln
i,hLh, j = 0 also holds. Therefore, Ln+1

i, j = 0 if dis(vi, v j) >
n + 1, which completes the proof. □

We now focus on a single element of the output signal f′ to observe how the
calculation is related to other nodes in the graph. More specifically, the value
of the output signal at the node vi can be calculated as:

f′[i] =
∑
v j∈V

 K∑
k=0

θkLk
i, j

 f[j], (5.13)

which can be regarded as a linear combination of the original signal on all the

nodes according to the weight
K∑

k=0
θkLk

i, j. According to Lemma 5.2, Lk
i, j = 0

when dis(vi, v j) > k. Hence, not all the nodes are involved in this calculation,
but only those nodes that are within K-hop of the node vi are involved. We can
reorganize Eq. (5.13) with only those nodes that are within K-hop neighbor-
hood of node vi as:

f′[i] = bi,if[i] +
∑

v j∈N
K (vi)

bi, jf[j], (5.14)

whereNK(vi) denotes all the nodes that are within K-hop neighborhood of the
node vi and the parameter bi, j is defined as:

bi, j =

K∑
k=dis(vi,v j)

θkLk
i, j,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

118 Graph Neural Networks

where dis(vi, v j) denotes the length of the shortest path between node vi and
node v j. We can clearly observe that the Poly-Filter is localized in the spatial
domain as it only involves K-hop neighborhoods when calculating the output
signal value for a specific node. Furthermore, the Poly-Filter can be also re-
garded as a spatial-based graph filter as the filtering process can be described
based on the spatial graph structure as shown in Eq. (5.14). A similar graph fil-
ter operation is proposed in (Atwood and Towsley, 2016). Instead of using the
powers of Laplacian matrix, it linearly combines information aggregated from
multi-hop neighbors of the center node with powers of the adjacency matrix .

While the Poly-Filter enjoys various advantages, there are still some limi-
tations. One major issue is that the basis of the polynomial (i.e., 1, x, x2, . . .)
is not orthogonal to each other. Hence, the coefficients are dependent on each
other, making them unstable under perturbation during the learning process.
In other words, an update in one coefficient may lead to changes in other co-
efficients. To address this issue, Chebyshev polynomial, which has a set of
orthogonal basis, is utilized to model the filter (Defferrard et al., 2016). Next,
we briefly discuss the Chebyshev polynomial and then detail the Cheby-Filter
based on the Chebyshev polynomial.

Chebyshev Polynomial and Cheby-Filter
The Chebyshev polynomials Tk(y) can be generated by the following recur-
rence relation:

Tk(y) = 2yTk−1(y) − Tk−2(y), (5.15)

with T0(y) = 1 and T1(y) = y, respectively. For y ∈ [−1, 1], these Chebyshev
polynomials can be represented in the trigonometric expression as:

Tk(y) = cos(k arccos(y)),

which means that each Tk(y) is bounded in [−1, 1]. Furthermore, these Cheby-
shev polynomials satisfy the following relation:∫ 1

−1

Tl(y)Tm(y)√
1 − y2

dy =
{
δl,mπ/2 if m, l > 0,
π if m = l = 0,

(5.16)

where δl,m = 1 only when l = m, otherwise δl,m = 0. Eq. (5.16) indicates that
the Chebyshev polynomials are orthogonal to each other. Thus, the Chebyshev
polynomials form an orthogonal basis for the Hillbert space of square inte-
grable functions with respect to the measure dy/

√
1 − y2, which is denoted as

L2([−1, 1], dy/
√

1 − y2).
As the domain for the Chebyshev polynomials is [−1, 1], to approximate the

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.3 Graph Filters 119

filter with the Chebyshev polynomials, we rescale and shift the eigenvalues of
the Laplacian matrix as follows:

λ̃l =
2 · λl

λmax
− 1,

where λmax = λN is the largest eigenvalue of the Laplacian matrix. Clearly, all
the eigenvalues are transformed to the range [−1, 1] by this operation. Corre-
spondingly, in the matrix form, the rescaled and shifted diagonal eigenvalue
matrix is denoted as:

Λ̃ =
2Λ
λmax

− I,

where I is the identity matrix. The Cheby-Filter, which is parametarized with
the truncated Chebyshev polynomials can be formulated as follows:

γ(Λ) =
K∑

k=0

θkTk(Λ̃).

The process of applying the Cheby-Filter on a graph signal f can be defined
as:

f′ = U ·
K∑

k=0

θkTk(Λ̃)U⊤f

=

K∑
k=0

θkUTk(Λ̃)U⊤f. (5.17)

Next, we show that UTk(Λ̃)U⊤ = Tk(L̃) with L̃ = 2L
λmax
− I in the following

theorem.

Theorem 5.3 For a graph G with Laplacian matrix L, the following equation
holds for k ≥ 0.

UTk(Λ̃)U⊤ = Tk(L̃),

where

L̃ =
2L
λmax

− I.

Proof For k = 0, the equation holds as UT0(Λ̃)U⊤ = I = T0(L̃).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

120 Graph Neural Networks

For k = 1,

UT1(Λ̃)U⊤ = UΛ̃U⊤

= U(
2Λ
Λmax

− I)U⊤

=
2L
λmax

− I

= T1(L̃).

Hence, the equation also holds for k = 1.
Assume that the equation holds for k = n − 2 and k = n − 1 with n ≥ 2,

we show that the equation also holds for k = n using the recursive relation in
Eq. (5.15) as:

UTn(Λ̃)U⊤ = U
[
2Λ̃Tn−1(Λ̃) − Tn−2(Λ̃)

]
U⊤

= 2UΛ̃Tn−1(Λ̃)U⊤ − UTn−2(Λ̃)U⊤

= 2UΛ̃UU⊤Tn−1(Λ̃)U⊤ − Tn−2(L̃)

= 2L̃Tn−1(L̃) − Tn−2(L̃)

= Tn(L̃),

which completes the proof. □

With theorem 5.3, we can further simplify Eq. (5.17) as:

f′ =
K∑

k=0

θkUTk(Λ̃)U⊤f

=

K∑
k=0

θkTk(L̃)f

Hence, the Cheby-Filter still enjoys the advantages of Poly-Filter while it is
more stable under perturbations.

GCN-Filter: Simplified Cheby-Filter Involving 1-hop Neighbors
The Cheby-Filter involves a K-hop neighborhood of a node when calculat-
ing the new features for the node. In (Kipf and Welling, 2016a), a simplified
Cheby-Filter named GCN-Filter is proposed. It is simplified from the Cheby-
Filter by setting the order of Chebyshev polynomials to K = 1 and approximat-
ing λmax ≈ 2. Under this simplification and approximation, the Cheby-Filter

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.3 Graph Filters 121

with K = 1 can be simplified as follows:

γ(Λ) = θ0T0(Λ̃) + θ1T1(Λ̃)

= θ0I + θ1Λ̃

= θ0I + θ1(Λ − I).

Correspondingly, applying the GCN-Filter to a graph signal f, we can get the
output signal f′ as follows:

f′ = Uγ(Λ)U⊤f
= θ0UIU⊤f + θ1U(Λ − I)U⊤f
= θ0f − θ1(L − I)f

= θ0f − θ1(D−
1
2 AD

1
2)f. (5.18)

Note that Eq. (5.18) holds as the normalized Laplacian matrix as defined in
Definition 2.29 is adopted, i.e. L = I − D− 1

2 AD− 1
2 . A further simplification is

applied to Eq. (5.18) by setting θ = θ0 = −θ1, which leads to

f′ = θ0f − θ1(D−
1
2 AD

1
2)f

= θ(I + D−
1
2 AD−

1
2)f. (5.19)

Note that the matrix I + D− 1
2 AD− 1

2 has eigenvalues in the range [0, 2], which
may lead to numerical instabilities when this operator is repeatedly applied to
a specific signal f. Hence, a renormalization trick is proposed to alleviate this
problem, which uses D̃− 1

2 ÃD̃− 1
2 to replace the matrix I+D− 1

2 AD in Eq. (5.19),
where Ã = A+ I and D̃ii =

∑
j

Ãi, j. The final GCN-Filter after these simplifica-

tions is defined as:

f′ = θD̃−
1
2 ÃD̃−

1
2 f. (5.20)

The i, j-th element of D̃− 1
2 ÃD̃− 1

2 is non-zero only when nodes vi and v j are
connected. For a single node, this process can be viewed as aggregating infor-
mation from its 1-hop neighbors where the node itself is also regarded as its
1-hop neighbor. Thus, the GCN-Filter can also be viewed as a spatial-based
filter, which only involves directly connected neighbors when updating node
features.

Graph Filters for Multi-channel Graph Signals
We have introduced the graph filters for 1-channel graph signals, where each
node is associated with a single scalar value. However, in practice, graph sig-
nals are typically multi-channel, where each node has a vector of features. A

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

122 Graph Neural Networks

multi-channel graph signals with din dimensions can be denoted as F ∈ RN×din .
To extend the graph filters to the multi-channel signals, we utilize the signals
from all the input channels to generate the output signal as follows:

fout =

din∑
d=1

U · γd(Λ) · U⊤F:,d

where fout ∈ R
N is the 1-channel output signal of the filter and F:,d ∈ R

N de-
notes the d-th channel of the input signal. Thus, the process can be viewed as
applying the graph filter in each input channel and then calculating the summa-
tion of their results. Just as the classical convolutional neural networks, in most
of the cases, multiple filters are used to filter the input channels and the output
is also a multi-channel signal. Suppose that we use dout filters, the process to
generate the dout-channel output signal is defined as:

F′:, j =
din∑

d=1

U · γ j,d(Λ) · U⊤F:,d for j = 1, . . . , dout.

Specifically, in the case of GCN-Filter in Eq. (5.20), this process for multi-
channel input and output can be simply represented as:

F′:, j =
din∑

d=1

θ j,dD̃−
1
2 ÃD̃−

1
2 F:,d for j = 1, . . . , dout,

which can be further rewritten in a matrix form as:

F′ = D̃−
1
2 ÃD̃−

1
2 FΘ (5.21)

where Θ ∈ Rdin×dout and Θd, j = θ j,d is the parameter corresponding to the j-th
output channel and d-th input channel. Specifically, for a single node vi, the
filtering process in Eq. (5.21) can also be formulated in the following form:

F′i =
∑

v j∈N(vi)∪{vi}

(
D̃−

1
2 ÃD̃−

1
2

)
i, j

F jΘ =
∑

v j∈N(vi)∪{vi}

1√
d̃id̃ j

F jΘ, (5.22)

where d̃i = D̃i,i and we use Fi ∈ R
1×dout to denote the i-th row of F, i.e., the

features for node vi. The process in Eq. (5.22) can be regarded as aggregating
information from 1-hop neighbors of node vi.

5.3.2 Spatial-based Graph Filters

As shown in Eq. (5.22), for a node vi, the GCN-Filter performs a spatial infor-
mation aggregation involving 1-hop neighbors and the matrix Θ consisting of
parameters for the filters can be regarded as a linear transformation applying to

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.3 Graph Filters 123

the input node features. In fact, spatial-based filters in graph neural networks
have been proposed even before deep learning became popular (Scarselli et al.,
2005). More recently, A variety of spatial-based filters have been designed
for graph neural networks. In this section, we review the very first spatial fil-
ter (Scarselli et al., 2005, 2008) and then more advanced spatial-based filters.

The filter in the very first graph neural network
The concept of graph neural networks was first proposed in (Scarselli et al.,
2008). This GNN model iteratively updates features of one node by utilizing
features of its neighbors. Next, we briefly introduce the design of the filter
in the very first GNN model. Specifically, the model is proposed to deal with
graph data where each node is associated with an input label. For node vi, its
corresponding label can be denoted as li. For the filtering process, the input
graph feature is denoted as F, where Fi, i.e., the i-th row of F, is the associated
features for node vi. The output features of the filter are represented as F′. The
filtering operation for node vi can be described as:

F′i =
∑

v j∈N(vi)

g(li,F j, l j),

where g() is a parametric function, called local transition function, which is
spatially localized. The filtering process for node vi only involves its 1-hop
neighbors. Typically g() can be modeled by feedforward neural networks. The
function g() is shared by all the nodes in the graph when performing the filter-
ing process. Note that the node label information li can be viewed as the initial
input information, which is fixed and utilized in the filtering process.

GraphSAGE-Filter
The GraphSAGE model proposed in (Hamilton et al., 2017a) introduced a spa-
tial based filter, which is also based on aggregating information from neighbor-
ing nodes. For a single node vi, the process to generate its new features can be
formulated as follows:

NS (vi) = SAMPLE(N(vi), S) (5.23)

f′NS (vi) = AGGREGATE({F j,∀v j ∈ NS (vi)}) (5.24)

F′i = σ(
[
Fi, f′NS (vi)

]
Θ) (5.25)

where SAMPLE() is a function that takes a set as input and randomly samples
S elements from the input as output, AGGREGATE() is a function to combine
the information from the neighboring nodes where f′

NS (vi)
denotes the output of

the AGGREGATE() function and [·, ·] is the concatenation operation. Hence,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

124 Graph Neural Networks

for a single node vi, the filter in GraphSAGE first samples S nodes from its
neighboring nodes N(vi) as shown in Eq. (5.23). Then, the AGGREGATE()
function aggregates the information from these sampled nodes and generates
the feature f′

NS (vi)
as shown in Eq. (5.24). Finally, the generated neighborhood

information and the old features of node vi are combined to generate the new
features for node vi as shown in Eq. (5.25). Various AGGREGATE() functions
have been introduced in (Hamilton et al., 2017a) as below.

• Mean aggregator. The mean aggregator is to simply take element-wise
mean of the vectors in {F j,∀v j ∈ NS (vi)}. The mean aggregator here is very
similar to the filter in GCN. When dealing with a node vi, both of them take
the (weighted) average of the neighboring nodes as its new representation.
The difference is how the input representation F j of node vi gets involved
in the calculation. It is clear that in GraphSAGE, Fi is concatenated to the
aggregated neighboring information f′

NS (vi)
. However, in the GCN-Filter, the

node vi is treated equally as its neighbors and Fi is a part of the weighted
average process.

• LSTM aggregator. The LSTM aggregator is to treat the set of the sampled
neighboring nodes NS (vi) of node vi as a sequence and utilize the LSTM
architecture to process the sequence. The output of the last unit of the LSTM
serves as the result f′

NS (vi)
. However, there is no natural order among the

neighbors; hence, a random ordering is adopted in (Hamilton et al., 2017a).
• Pooling operator. The pooling operator adopts the max pooling operation

to summarize the information from the neighboring nodes. Before summa-
rizing the results, input features at each node are first transformed with a
layer of a neural network. The process can be described as follows

f′NS (vi) = max({α(F jΘpool),∀v j ∈ NS (vi)}),

where max() denotes the element-wise max operator, Θpool denotes a trans-
formation matrix and α() is a non-linear activation function.

The GraphSAGE-Filter is spatially localized as it only involves 1-hop neigh-
bors no matter which aggregator is used. The aggregator is also shared among
all the nodes.

GAT-Filter
Self-attention mechanism (Vaswani et al., 2017) is introduced to build spatial
graph filters in graph attention networks (GAT) (Veličković et al., 2017). For
convenience, we call the graph filter in GAT as GAT-Filter. The GAT-Filter is
similar to the GCN-Filter since it also performs an information aggregation

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.3 Graph Filters 125

from neighboring nodes when generating new features for each node. The ag-
gregation in GCN-Filter is solely based on the graph structure, while GAT-filter
tries to differentiate the importance of the neighbors when performing the ag-
gregation. More specifically, when generating the new features for a node vi,
it attends to all its neighbors to generate an importance score for each neigh-
bor. These importance scores are then adopted as linear coefficients during the
aggregation process. Next, we detail the GAT-Filter.

The importance score of node v j ∈ N(vi) ∪ {vi} to the node vi can be calcu-
lated as follows:

ei j = a(FiΘ,F jΘ), (5.26)

where Θ is a shared parameter matrix. a() is a shared attention function which
is a single-layer feedforward network in (Veličković et al., 2017) as:

a(FiΘ,F jΘ) = LeakyReLU(a⊤[FiΘ,F jΘ]),

where [·, ·] denotes the concatenation operation, a is a parametrized vector
and LeakyReLU is the nonlinear activation function we have introduced in
Section 3.2.2. The scores calculated by Eq. (5.26) are then normalized before
being utilized as the weights in the aggregation process to keep the output
representation in a reasonable scale. The normalization over all neighbors of vi

is performed through a softmax layer as:

αi j =
exp(ei j)∑

vk∈N(vi)∪{vi}
exp(eik)

,

where αi j is the normalized importance score indicating the importance of node
v j to node vi. With the normalized importance scores, the new representation
F′i of node vi can be computed as:

F′i =
∑

v j∈N(vi)∪{vi}

αi jF jΘ, (5.27)

whereΘ is the same transforming matrix as in Eq. (5.26). To stabilize the learn-
ing process of self-attention, the multi-head attention (Vaswani et al., 2017)
is adopted. Specifically, M independent attention mechanisms in the form of
Eq. (5.27) with different Θm and αm

i j are performed in parallel. Their outputs
are then concatenated to generate the final representation of node vi as:

F′i = ∥
M
m=1

∑
v j∈N(vi)∪{vi}

αm
i jF jΘ

m, (5.28)

where we use ∥ to denote the concatenation operator. Note that the GAT-
Filter is spatially localized, as for each node, only its 1-hop neighbors are

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

126 Graph Neural Networks

utilized in the filtering process to generate the new features. In the original
model (Veličković et al., 2017), activation functions are applied to the output
of each attention head before the concatenation. The formulation in Eq. (5.28)
did not include activation functions for convenience.

ECC-Filter
When there is edge information available in the graph, it can be utilized for de-
signing the graph filters. Specifically, in (Simonovsky and Komodakis, 2017),
an edge-conditioned graph filter (ECC-Filter) is designed when edges have
various types (the number of types is finite). For a given edge (vi, v j), we use
tp(vi, v j) to denote its type. Then the ECC-Filter is defined as:

F′i =
1

|N(vi)|

∑
v j∈N(vi)

F jΘtp(vi,v j),

where Θtp(vi,v j) is the parameter matrix shared by the edges with the type of
tp(vi, v j).

GGNN-Filter
The GGNN-Filter (Li et al., 2015) adapts the original GNN filter in (Scarselli
et al., 2008) with Gated Recurrent Unit (GRU) (see Section 3.4 for details of
GRU). The GGNN-Filter is designed for graphs where the edges are directed
and also have different types. Specifically, for an edge (vi, v j) ∈ E, we use
tp(vi, v j) to denote its types. Note that, as the edges are directed, the types of
edges (vi, v j) and (v j, vi) can be different, i.e, tp(vi, v j) , tp(v j, vi). The filtering
process of the GGNN-Filter for a specific node vi can be formulated as follows:

mi =
∑

(v j,vi)∈E

F jΘ
e
tp(v j,vi) (5.29)

zi = σ (miΘ
z + FiUz) (5.30)

ri = σ (miΘ
r + FiUr) (5.31)

F̃i = tanh (miΘ + (ri ⊙ Fi) U) (5.32)

F′i = (1 − zi) ⊙ Fi + zi ⊙ F̃i (5.33)

where Θe
tp(v j,vi)

,Θz,Θr and Θ are parameters to be learned. The first step as
in Eq. (5.29) is to aggregate information from both the in-neighbors and out-
neighbors of node vi. During this aggregation, the transform matrix Θe

tp(v j,vi)
is shared by all the nodes connected to vi via the edge type tp(v j, vi). The
remaining equations (or Eqs. (5.30)-(5.33)) are GRU steps to update the hidden
representations with the aggregated information mi. zi and ri are the update and

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.3 Graph Filters 127

reset gates,σ(·) is the sigmoid function and ⊙ denotes the Hardmand operation.
Hence, the GGNN-Filter can also be written as:

mi =
∑

(v j,vi)∈E

F jΘ
e
tp(v j,vi) (5.34)

F′i = GRU(mi,Fi) (5.35)

where Eq. (5.35) summarizes Eqs. (5.30) to (5.33).

Mo-Filter
In (Monti et al., 2017), a general framework, i.e., mixture model networks
(MoNet), is introduced to perform convolution operations on non-Euclidean
data such as graphs and manifolds. Next, we introduce the graph filtering op-
eration in (Monti et al., 2017), which we name as the Mo-Filter. We take node
vi as an example to illustrate its process. For each neighbor v j ∈ N(vi), a
pseudo-coordinate is introduced to denote the relevant relation between nodes
v j and vi. Specifically, for the center node vi and its neighbor v j, the pseudo-
coordinate is defined with their degrees as:

c(vi, v j) =

 1
√

di
,

1√
d j

⊤ , (5.36)

where di and d j denote the degree of nodes vi and v j, respectively. Then a
Gaussian kernel is applied on the pseudo-coordinate to measure the relation
between the two nodes as:

αi, j = exp
(
−

1
2

(c(vi, v j) − µ)⊤Σ−1(c(vi, v j) − µ)
)
, (5.37)

where µ and Σ are the mean vector and the covariance matrix of the Gaussian
kernel to be learned. Note that instead of using the original pseudo-coordinate,
we can also utilize a feedforward network to first transform c(vi, v j). The ag-
gregation process is as:

F′i =
∑

v j∈N(vi)

αi, jF j. (5.38)

In Eq. (5.38), a single Gaussian kernel is used. However, typically, a set of K
kernels with different means and covariances are adopted, which results in the
following process:

F′i =
K∑

k=1

∑
v j∈N(vi)

α(k)
i, j F j,

where α(k)
i, j is from the k-th Gaussian kernel.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

128 Graph Neural Networks

MPNN: A General Framework for Spatial-based Graph Filters
Message Passing Neural Networks (MPNN) is a general GNN framework.
Many spatial-based graph filters including GCN-Filter, GraphSAGE-Filter and
GAT-Filter, are its special cases (Gilmer et al., 2017). For a node vi, the MPNN-
Filter updates its features as follows:

mi =
∑

v j∈N(vi)

M(Fi,F j, e(vi,v j)), (5.39)

F′i = U(Fi,mi), (5.40)

where M() is the message function, U() is the update function and e(vi,v j) is
edge features if available. The message function M() generates the messages
to pass to node vi from its neighbors. The update function U() then updates
the features of node vi by combining the original features and the aggregated
message from its neighbors. The framework can be even more general if we re-
place the summation operation in Eq. (5.39) with other aggregation operations.

5.4 Graph Pooling

The graph filters refine the node features without changing the graph struc-
ture. After the graph filter operation, each node in the graph has a new feature
representation. Typically, the graph filter operations are sufficient for node-
focused tasks that take advantage of the node representations. However, for
graph-focused tasks, a representation of the entire graph is desired. To obtain
such representation, we need to summarize the information from the nodes.
There are two main kinds of information that are important for generating the
graph representation – one is the node features, and the other is the graph
structure. The graph representation is expected to preserve both the node fea-
ture information and the graph structure information. Similar to the classical
convolutional neural networks, graph pooling layers are proposed to generate
graph level representations. The early designs of graph pooling layers are usu-
ally flat. In other words, they generate the graph-level representation directly
from the node representations in a single step. For example, the average pool-
ing layers and max-pooling layers can be adapted to graph neural networks by
applying them to each feature channel. Later on, hierarchical graph pooling
designs have been developed to summarize the graph information by coarsen-
ing the original graph step by step. In the hierarchical graph pooling design,
there are often several graph pooling layers, each of which follows a stack of
several filters, as shown in Figure 5.5. Typically, a single graph pooling layer

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.4 Graph Pooling 129

(both in the flat and the hierarchical cases) takes a graph as input and output a
coarsened graph. Recall that the process has been summarized by Eq.(5.2) as:

A(op),F(op) = pool(A(ip),F(ip)), (5.41)

Next, we first describe representative flat pooling layers and then introduce
hierarchical pooling layers.

5.4.1 Flat Graph Pooling

A flat pooling layer directly generates a graph-level representation from the
node representations. In flat pooling layers, there is no new graph but a single
node being generated. Thus, instead of Eq.(5.41), the pooling process in flat
pooling layers can be summarized as:

fG = pool(A(ip),F(ip)),

where fG ∈ R1×dop is the graph representation. Next, we introduce some repre-
sentative flat pooling layers. The max-pooling and average pooling operations
in classical CNNs can be adapted to GNNs. Specifically, the operation of graph
max-pooling layer can be expressed as:

fG = max(F(ip)),

where the max operation is applied to each channel as follows:

fG[i] = max(F(ip)
:,i),

where F(ip)
:,i denotes the i-th channel of F(ip). Similarly, graph average pooling

operation applies the average pooling operation channel-wisely as:

fG = ave(F(ip)).

In (Li et al., 2015), an attention-based flat pooling operation, which is named
as gated global pooling, is proposed. An attention score measuring the im-
portance of each node is utilized to summarize the node representations for
generating the graph representation. Specifically, the attention score for node
vi is computed as:

si =
exp

(
h
(
F(ip)

i

))
∑

v j∈V

exp
(
h
(
F(ip)

j

)) ,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

130 Graph Neural Networks

where h is a feedforward network to map F(ip)
i to a scalar, which is then nor-

malized through softmax. With the learned attention scores, the graph repre-
sentation can be summarized from the node representations as:

fG =
∑
vi∈V

si · tanh
(
F(ip)

i Θip

)
,

where Θip are parameters to be learned and the activation function tanh() can
be also replaced with the identity function.

Some flat graph pooling operations are embedded in the design of the fil-
tering layer. A “fake” node is added to the graph that is connected to all the
nodes (Li et al., 2015). The representation of this “fake” node can be learned
during the filtering process. Its representation captures the information of the
entire graph as it is connected to all nodes in the graph. Hence, the repre-
sentation of the “fake” node can be leveraged as the graph representation for
downstream tasks.

5.4.2 Hierarchical Graph Pooling

Flat pooling layers usually ignore the hierarchical graph structure information
when summarizing the node representations for the graph representation. Hier-
archical graph pooling layers aim to preserve the hierarchical graph structural
information by coarsening the graph step by step until the graph representa-
tion is achieved. Hierarchical pooling layers can be roughly grouped accord-
ing to the ways they coarsen the graph. One type of hierarchical pooling layers
coarsens the graph by sub-sampling, i.e., selecting the most important nodes
as the nodes for the coarsened graph. A different kind of hierarchical pooling
layer combines nodes in the input graph to form supernodes that serve as the
nodes for the coarsened graph. The main difference between these two types of
coarsening methods is that the sub-sampling based methods keep nodes from
the original graph while the supernode-based methods generate new nodes for
the coarsened graph. Next, we describe some representative techniques in these
two categories. Specifically, we elaborate on the process of hierarchical pool-
ing layers in Eq. (5.41) by explaining how the coarsened graph A(op) and node
features F(op) are generated.

Downsampling-based Pooling
To coarsen the input graph, a set of Nop nodes are selected according to some
importance measures, and then graph structure and node features for the coars-
ened graph are formed upon these nodes. There are three key components in a

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.4 Graph Pooling 131

downsampling based graph pooling layer: 1) developing the measure for down-
sampling; 2) generating graph structure for the coarsened graph and 3) gener-
ating node features for the coarsened graph. Different downsampling based
pooling layers usually have distinct designs in these components. Next, we
introduce representative downsampling based graph pooling layers.

The gPool layer (Gao and Ji, 2019) is the first to adopt the downsampling
strategy to perform graph coarsening for graph pooling. In gPool, the impor-
tance measure for nodes is learned from the input node features F(ip) as:

y =
F(ip)p
∥p∥

, (5.42)

where F(ip) ∈ RNip×dip is the matrix denoting the input node features and p ∈ Rdip

is a vector to be learned to project the input features into importance scores.
After obtaining the importance scores y, we can rank all the nodes and select
the Nop most important ones as:

idx = rank(y,Nop),

where Nop is the number of nodes in the coarsened graph and idx denotes the
indices of the selected top Nop nodes. With the selected nodes represented with
their indices idx, we proceed to generate the graph structure and node features
for the coarsened graph. Specifically, the graph structure for the coarsened
graph can be induced from the graph structure of the input graph as:

A(op) = A(ip)(idx, idx),

where A(ip)(idx, idx) performs row and column extraction from A(ip) with the
selected indices idx. Similarly, the node features can also be extracted from the
input node features. In (Gao and Ji, 2019), gating system is adopted to control
the information flow from the input features to the new features. Specifically,
the selected nodes with a higher importance score can have more information
flow to the coarsened graph, which can be modeled as:

ỹ = σ(y(idx))

F̃ = F(ip)(idx, :)

Fp = F̃ ⊙ (ỹ1⊤dip
),

where σ() is the sigmoid function mapping the importance score to (0, 1) and
1dip ∈ R

dip is a all-ones vector. Note that y(idx) extracts the corresponding
elements from y according to the indices in idx and F(ip)(idx) retrieves the the
corresponding rows according to idx.

In gPool, the importance score is learned solely based on the input features,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

132 Graph Neural Networks

as shown in Eq. (5.42). It ignores the graph structure information. To incor-
porate the graph structure information when learning the importance score,
the GCN-Filter is utilized to learn the importance score in (Lee et al., 2019).
Specifically, the importance score can be obtained as follows:

y = α
(
GCN-Filter(A(ip),F(ip))

)
. (5.43)

where α is an activation function such as tanh. Note that y is a vector instead of
a matrix. In other words, the number of the output channel of the GCN-Filter
is set to 1. This graph pooling operation is named as the SAGPool.

Supernode-based Hierarchical Graph Pooling
The downsampling based hierarchical graph pooling layers try to coarsen the
input graph by selecting a subset of nodes according to some importance mea-
sures. During the process, the information about the unselected nodes is lost as
these nodes are discarded. Supernode-based pooling methods aim to coarsen
the input graph by generating supernodes. Specifically, they try to learn to as-
sign the nodes in the input graph into different clusters, where these clusters
are treated as supernodes. These supernodes are regarded as the nodes in the
coarsened graph. The edges between the supernodes and the features of these
supernodes are then generated to form the coarsened graph. There are three key
components in a supernode-based graph pooling layer: 1) generating supern-
odes as the nodes for the coarsened graph; 2) generating graph structure for
the coarsened graph; and 3) generating node features for the coarsened graph.
Next, we describe some representative supernode based graph pooling layers.

diffpool

The diffpool algorithm generates the supernodes in a differentiable way. In
detail, a soft assignment matrix from the nodes in the input graph to the su-
pernodes is learned using GCN-Filter as:

S = softmax
(
GCN-Filter(A(ip),F(ip))

)
, (5.44)

where S ∈ RNip×Nop is the assignment matrix to be learned. Note that as shown
in Eq. (5.3), F(ip) is usually the output of the latest graph filtering layer. How-
ever, in (Ying et al., 2018c), the input of the pooling layer is the output of the
previous pooling layer, i.e., the input of a learning block F(ib) (see details on
block in Section 5.2.2). Furthermore, several GCN-Filters can be stacked to
learn the assignment matrix, though only a single filter is utilized in Eq. (5.44).
Each column of the assignment matrix can be regarded as a supernode. The
softmax function is applied row-wisely; hence, each row is normalized to have

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.4 Graph Pooling 133

a summation of 1. The j-th element in the i-th row indicates the probability
of assigning the i-th node to the j-th supernode. With the assignment matrix
S, we can proceed to generate the graph structure and node features for the
coarsened graph. Specifically, the graph structure for the coarsened graph can
be generated from the input graph by leveraging the soft assignment matrix S
as:

A(op) = S⊤A(ip)S ∈ RNop×Nop .

Similarly, the node features for the supernodes can be obtained by linearly
combining the node features of the input graph according to the assignment
matrix S as:

F(op) = S⊤F(inter) ∈ RNop×dop ,

where F(inter) ∈ RNip×dop is the intermediate features learned through GCN-
Filters as follows:

F(inter) = GCN-Filter(A(ip),F(ip)). (5.45)

Multiple GCN-Filters can be stacked though only one is shown in Eq. (5.45).
The process of diffpool can be summarized as:

A(op),F(op) = diffpool(A(ip),F(ip)).

EigenPooling
EigenPooling (Ma et al., 2019b) generates the supernodes using spectral clus-
tering methods and focuses on forming graph structure and node features for
the coarsened graph. After applying the spectral clustering algorithm, a set of
non-overlapping clusters are obtained, which are also regarded as the supern-
odes for the coarsened graph. The assignment matrix between the nodes of the
input graph and the supernodes can be denoted as S ∈ {0, 1}Nip×Nop , where only
a single element in each row is 1 and all others are 0. More specifically, Si, j = 1
only when the i-th node is assigned to the j-th supernode. For the k-th supern-
ode, we use A(k) ∈ RN(k)×N(k)

to describe the graph structure in its corresponding
cluster, where N(k) is the number of nodes in this cluster. We define a sampling
operator C(k) ∈ {0, 1}Nip×N(k)

as:

C(k)
i, j = 1 if and only if Γ(k)(j) = vi,

where Γ(k) denotes the list of nodes in the k-th cluster and Γ(k)(j) = vi means
that node vi corresponds to the j-th node in this cluster. With this sampling
operator, the adjacency matrix for the k-th cluster can be formally defined as:

A(k) = (C(k))⊤A(ip)C(k).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

134 Graph Neural Networks

Next, we discuss the process of generating graph structure and node features
for the coarsened graph. To form the graph structure between the supernodes,
only the connections across the clusters in the original graph are considered.
To achieve the goal, we first generate the intra-cluster adjacency matrix for the
input graph, which only consists of the edges within each cluster as:

Aint =

Nop∑
k=1

C(k)A(k)(C(k))⊤.

Then, the inter-cluster adjacency matrix, which only consists of the edges
across the clusters, can be represented as Aext = A−Aint. The adjacency matrix
for the coarsened graph can be obtained as:

Aop = S⊤AextS.

Graph Fourier Transform is adopted to generate node features. Specifically,
graph structure and node features of each subgraph (or cluster) are utilized
to generate the node features for the corresponding supernode. Next, we take
the k-th cluster as an illustrative example to demonstrate the process. Let L(k)

denote the Laplacian matrix for this subgraph and u(k)
1 , . . . ,u(k)

n(k) are its cor-
responding eigenvectors. The features of the nodes in this subgraph can be
extracted from F(ip) by using the sampling operator C(k) as follows:

F(k)
ip = (C(k))⊤F(ip),

where F(k)
ip ∈ R

N(k)×dip is the input features for nodes in the k-th cluster.
Then, we apply Graph Fourier Transform to generate the graph Fourier co-

efficients for all channels of F(k)
ip as:

f(k)
i = (u(k)

i)⊤F(k)
ip for i = 1, . . . ,N(k),

where f(k)
i ∈ R

1×dip consists of the i-th graph Fourier coefficients for all feature
channels. The node features for the k-th supernode can be formed by concate-
nating these coefficients as:

f(k) = [f(k)
1 , . . . , f(k)

N(k)].

We usually only utilize the first few coefficients to generate features of supern-
odes for two reasons. First, different subgraphs may have varied numbers of
nodes; hence, to ensure the same dimension of features, some of the coeffi-
cients need to be discarded. Second, the first few coefficients typically capture
most of the important information as in reality, the majority of the graph sig-
nals are smooth.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.5 Parameter Learning for Graph Neural Networks 135

5.5 Parameter Learning for Graph Neural Networks

In this section, we use node classification and graph classification as examples
of downstream tasks to illustrate how to learn parameters of Graph Neural
Networks. Note that we have formally defined the tasks of node classification
and graph classification in Definition 2.42 and Definition 2.46, respectively.

5.5.1 Parameter Learning for Node Classification

As introduced in Definition 2.42, the node set of a graph V can be divided
to two disjoint sets, Vl with labels and Vu without labels. The goal of node
classification is to learn a model based on the labeled nodes Vl to predict the
labels of the unlabeled nodes in Vu. The GNN model usually takes the entire
graph as input to generate node representations, which are then utilized to train
a node classifier. Specifically, let GNNnode(,) denote a GNN model with several
graph filtering layers stacked as introduced in Section 5.2.1. The GNNnode(,)
function takes the graph structure and the node features as input and outputs
the refined node features as follows:

F(out) = GNNnode(A,F;Θ1), (5.46)

where Θ1 denotes the model parameters, A ∈ RN×N is the adjacency matrix,
F ∈ RN×din is the input features of the original graph and F(out) ∈ RN×dout is
the produced output features. Then, the output node features are utilized to
perform node classification as:

Z = softmax(F(out)Θ2), (5.47)

where Z ∈ RN×C is the output logits for all nodes, Θ2 ∈ R
dout×C is the param-

eter matrix to transform the features Fout into the dimension of the number of
classes C. The i-th row of Z indicates the predicted class distribution of node
vi and the predicted label is usually the one with the largest probability. The
entire process can be summarized as:

Z = fGNN(A,F;Θ), (5.48)

where the function fGNN consists of the processes in Eq. (5.46) and Eq. (5.47)
and Θ includes the parameters Θ1 and Θ2. The parameters Θ in Eq. (5.48) can
be learned by minimizing the following objective:

Ltrain =
∑

vi∈Vl

ℓ(fGNN(A,F;Θ)i, yi), (5.49)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

136 Graph Neural Networks

where fGNN(A,F;Θ)i denotes the i-th row of the output, i.e., the logits for node
vi, yi is the associated label and ℓ(·, ·) is a loss function such as cross-entropy
loss.

5.5.2 Parameter Learning for Graph Classification

As introduced in Definition 2.46, in the task of graph classification, each graph
is treated as a sample with an associated label. The training set can be denoted
as D = {Gi, yi}, where yi is the corresponding label for graph Gi. The task
of graph classification is to train a model on the training set D such that it
can perform good predictions on unlabeled graphs. The graph neural network
model is usually utilized as a feature encoder, which maps an input graph into
a feature representation as follows:

fG = GNNgraph(G;Θ1), (5.50)

where GNNgraph is the graph neural network model to learn graph-level repre-
sentations. It often consists of graph filtering and graph pooling layers. fG ∈
R1×dout is the produced graph-level representation. This graph-level representa-
tion is then utilized to perform the graph classification as:

zG = softmax(fGΘ2), (5.51)

whereΘ2 ∈ R
dout×C transforms the graph representation to the dimension of the

number of classes C and zG ∈ R1×C denotes the predicted logits for the input
graph G. The graph G is typically assigned to the label with the largest logit.
The entire process of graph classification can be summarized as follows:

zG = fGNN(G;Θ), (5.52)

where fGNN is the function includes Eq. (5.50) and Eq. (5.51) and Θ includes
parameters Θ1 and Θ2. The parameter Θ can be learned by minimizing the
following objective:

Ltrain =
∑
Gi∈D

ℓ(fGNN(Gi,Θ), yi),

where yi is the associated label of Gi and ℓ(·, ·) is a loss function.

5.6 Conclusion

In this chapter, we introduce the graph neural network (GNN) frameworks
for both node-focused and graph-focused tasks. Specifically, we introduce two

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

5.7 Further Reading 137

major components: 1) the graph filtering layer, which refines the node fea-
tures; and 2) the graph pooling layer, which aims to coarsen the graph and
finally generate the graph-level representation. We categorize graph filters as
spectral-based and spatial-based filters, then review representative algorithms
for each category and discuss the connections between these two categories.
We group graph pooling as flat graph pooling and hierarchical graph pooling
and introduce representative methods for each group. Finally, we present how
to learn GNN parameters via downstream tasks including node classification
and graph classification.

5.7 Further Reading

Besides from the graph neural network models introduced in this chapter, there
are also some other attempts to learn graph-level representations for graph
classification utilizing neural networks (Yanardag and Vishwanathan, 2015;
Niepert et al., 2016; Lee et al., 2018). In addition to representative graph fil-
tering and pooling operations introduced above, there are more graph filtering
and and pooling methods (Li et al., 2018c; Gao et al., 2018a; Zhang et al.,
2018a; Liu et al., 2019b; Velickovic et al., 2019; Morris et al., 2019; Gao et al.,
2020; Yuan and Ji, 2019). Meanwhile, several surveys introduce and summa-
rize the graph neural network models from different perspectives (Zhou et al.,
2018a; Wu et al., 2020; Zhang et al., 2018c). As graph neural network research
has gained increasing attention, multiple handy libraries have been designed to
ease the development of graph neural network models. These packages in-
clude Pytorch Geometric (PyG) (Fey and Lenssen, 2019), which is developed
upon PyTorch; and Deep Graph Library (DGL) (Wang et al., 2019e), which
has various deep learning frameworks including Pytorch and Tensorflow as its
backend.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6
Robust Graph Neural Networks

6.1 Introduction

As the generalizations of traditional DNNs to graphs, GNNs inherit both ad-
vantages and disadvantages of traditional DNNs. Like traditional DNNs, GNNs
have been shown to be effective in many graph-related tasks such as node-
focused and graph-focused tasks. Traditional DNNs have been demonstrated
to be vulnerable to dedicated designed adversarial attacks (Goodfellow et al.,
2014b; Xu et al., 2019b). Under adversarial attacks, the victimized samples are
perturbed in such a way that they are not easily noticeable, but they can lead to
wrong results. It is increasingly evident that GNNs also inherit this drawback.
The adversary can generate graph adversarial perturbations by manipulating
the graph structure or node features to fool the GNN models. This limitation
of GNNs has arisen immense concerns on adopting them in safety-critical ap-
plications such as financial systems and risk management. For example, in a
credit scoring system, fraudsters can fake connections with several high-credit
customers to evade the fraudster detection models; and spammers can easily
create fake followers to increase the chance of fake news being recommended
and spread. Therefore, we have witnessed more and more research attention
to graph adversarial attacks and their countermeasures. In this chapter, we first
introduce concepts and definitions of graph adversarial attacks and detail some
representative adversarial attack methods on graphs. Then, we discuss repre-
sentative defense techniques against these adversarial attacks.

6.2 Graph Adversarial Attacks

In graph-structured data, the adversarial attacks are usually conducted by mod-
ifying the graph structure and/or node features in an unnoticeable way such that

138

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6.2 Graph Adversarial Attacks 139

the prediction performance can be impaired. Specifically, we denote a graph
adversarial attacker as T . Given a targeted model fGNN(;Θ)) (either for node
classification or for graph classification), the attacker T tries to modify a given
graph G and generate an attacked graph G′ as:

G′ = T (G; fGNN(;Θ)) = T ({A,F}; fGNN(;Θ)),

where G = {A,F} is the input graph with A and F denoting its adjacency
matrix and feature matrix and G′ = {A′,F′} is the produced attacked graph.
Note that in this chapter, without specific mention, both the graph structure
and the input features are assumed to be discrete, i.e, A ∈ {0, 1}N×N and F ∈
{0, 1}N×d, respectively. The attacker is usually constraint to make unnoticeable
modifications on the input graph, which can be represented as:

G′ ∈ Φ(G),

where Φ(G) denotes a constraint space that consists of graphs that are “close”
to the graph G. There are various ways to define the spaceΦ(G), which we will
introduce when describing the attack methods. A typical and most commonly
adopted constraint space is defined as:

Φ(G) = {G′ = {A′,F′}; ∥A′ − A∥0 + ∥F′ − F∥0 ≤ ∆}, (6.1)

which means that the constraint space Φ(G) contains all the graphs that are
within a given perturbation budget ∆ away from the input graph G. The goal
of the attacker T is that the prediction results on the attacked graph G′ are dif-
ferent from the original input graph. For the node classification task, we focus
on the prediction performance of a subset of nodes, which is called the victim-
ized nodes and denoted as Vt ⊆ Vu where Vu is the set of unlabeled nodes
in G. While for the graph classification task, we concentrate on the prediction
performance on a test set of graphs.

6.2.1 Taxonomy of Graph Adversarial Attacks

We can categorize graph adversarial attack algorithms differently according to
the capacity, available resources, goals, and accessible knowledge of attackers.

Attackers’ Capacity
Adversaries can perform attacks during both the model training and the model
test stages. We can roughly divide attacks to evasion and poisoning attacks
based on the attacker’s capacity to insert adversarial perturbations:

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

140 Robust Graph Neural Networks

• Evasion Attack. Attacking is conducted on the trained GNN model or in the
test stage. Under the evasion attack setting, the adversaries cannot change
the model parameters or structures.

• Poisoning Attack. Attacking happens before the GNN model is trained.
Thus, the attackers can insert “poisons” into the training data such that the
GNN models trained on this data have malfunctions.

Perturbation Type
In addition to node features, graph-structured data provides rich structural in-
formation. Thus, the attacker can perturb graph-structured data from differ-
ent perspectives such as modifying node features, adding/deleting edges, and
adding fake nodes:

• Modifying Node Features. Attackers can slightly modify the node features
while keeping the graph structure.

• Adding or deleting edges: Attackers can add or delete edges.
• Injecting Nodes. Attackers can inject fake nodes to the graph, and link them

with some benign nodes in the graph.

Attackers’ Goal
According to the attackers’ goal, we can divide the attacks into two groups:

• Targeted Attack. Given a small set of test nodes (or targeted nodes), the
attackers target on making the model misclassify these test samples. Tar-
geted attacks can be further grouped into (1) direct attacks where the at-
tacker directly perturbs the targeted nodes and (2) influencer attacks where
the attacker can only manipulate other nodes to influence the targeted nodes.

• Untargeted Attack. The attacker aims to perturb the graph to reduce the
model’s overall performance.

Attackers’ Knowledge
The attacks can be categorized into three classes according to the level of ac-
cessible knowledge towards the GNN model fGNN(;Θ) as follows:

• White-box attack. In this setting, the attackers are allowed to access full
information of the attacked model fGNN(;Θ) (or the victim model) such as
its architecture, parameters, and training data.

• Gray-box attack. In this setting, the attackers cannot access the architecture
and the parameters of the victim model, but they can access the data utilized
to train the model.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6.2 Graph Adversarial Attacks 141

• Black-box attack. In this setting, the attackers can access to minimal in-
formation of the victim model. The attackers cannot access the architecture,
model parameters, and the training data. The attackers are only allowed to
query from the victim model to obtain the predictions.

In the following sections, we present some representative attack methods
from each category based on attackers’ knowledge, i.e., white-box, gray-box,
and black-box attacks.

6.2.2 White-box Attack

In the white-box attack setting, the attacker is allowed to access full informa-
tion of the victim model. In reality, this setting is not practical since complete
information is often unavailable. However, it can still provide some informa-
tion about the model’s robustness against adversarial attacks. Most existing
methods in this category utilize the gradient information to guide the attacker.
There are two main ways to use the gradient information – 1) formulating the
attack problem as an optimization problem that is addressed by the gradient-
based method; and 2) using the gradient information to measure the effective-
ness of modifying graph structure and features. Next, we present representative
white-box attacks from these two ways.

PGD Topology Attack
In (Xu et al., 2019c), the attacker is only allowed to modify the graph structures
but not the node features. The goal of the attacker is to reduce the node clas-
sification performance on a set of victimized nodesVt. A symmetric Boolean
matrix S ∈ {0, 1}N×N is introduced to encode the modification made by the
attacker T . Specifically, the edge between node vi and node v j is modified
(added or removed) only when Si, j = 1, otherwise the edge is not modified.
Given the adjacency matrix of a graph G, its supplement can be represented as
Ā = 11⊤ − I − A, where 1 ∈ RN is a vector with all elements as 1. Applying
the attacker T on the graph G can be represented as:

A′ = T (A) = A + (Ā − A) ⊙ S, (6.2)

where ⊙ denotes the Hadamand product. The matrix Ā − A indicates whether
an edge exists in the original graph or not. Specifically, when (Ā − A)i, j = 1,
there is no edge existing between node vi and node v j, thus the edge can be
added by the attacker. When (Ā − A)i, j = −1, there is an edge between nodes
vi and v j, and it can be removed by the attacker.

The goal of the attacker T is to find S that can lead to bad prediction perfor-
mance. For a certain node vi, given its true label yi, the prediction performance

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

142 Robust Graph Neural Networks

can be measured by the following CW-type loss adapted from Carlili-Wagner
(CW) attacks in the image domain (Carlini and Wagner, 2017):

ℓ(fGNN(G′;Θ)i, yi) = max
{

Z′i,yi
−max

c,yi
Z′i,c,−κ

}
, (6.3)

where G′ = {A′,F} is the attacked graph, fGNN(G′;Θ)i is utilized to denote
the i-th row of fGNN(G′;Θ), Z′ = fGNN(G′;Θ) is the logits calculated with
Eq (5.48) on the attacked graph G′. Note that we use the class labels yi and c as
the indices to retrieve the predicted probabilities of the corresponding classes.
Specifically, Z′i,yi

is the yi-th element of the i-th row of Z′, which indicates the
probability of node vi predicted as class yi. The term Z′i,yi

−max
c,yi

Z′i,c in Eq. (6.3)

measures the difference of the predicted probability between the true label yi

and the largest logit among all other classes. It is smaller than 0 when the
prediction is wrong. Hence, for the goal of the attacker, we include a penalty
when its value is larger than 0. Furthermore, in Eq. (6.3), κ > 0 is included as a
confidence level of making wrong predictions. It means that a penalty is given
when the difference between the logit of the true label yi and the largest logit
among all other classes is larger than −κ. A larger κ means that the prediction
needs to be strongly wrong to avoid a penalty.

The attacker T is to find S in Eq. (6.2) such that it can minimize the CW-
loss in Eq. (6.3) for all the nodes in the victimized node set Vt given a lim-
ited budget. Specifically, this can be represented as the following optimization
problem:

min
s
L(s) =

∑
vi∈Vt

ℓ(fGNN(G′;Θ)i, yi)

subject to ∥s∥0 ≤ ∆, s ∈ {0, 1}N(N−1)/2, (6.4)

where ∆ is the budget to modify the graph and s ∈ {0, 1}N(N−1)/2 is the vec-
torized S consisting of its independent perturbation variables. Note that S con-
tains N(N − 1)/2 independent perturbation variables, since S is a symmetric
matrix with diagonal elements fixed to 0. The constraint term can be regarded
as limiting the attacked graph G′ in the space Φ(G) defined by the constraint
on s. The problem in Eq. (6.4) is a combinatorial optimization problem. For
the ease of optimization, the constraint s ∈ {0, 1}N(N−1)/2 is relaxed to its con-
vex hull s ∈ [0, 1]N(N−1)/2. Specifically, we denote the constraint space as
S = {s; ∥s∥0 ≤ ∆, s ∈ [0, 1]N(N−1)/2}. Then the problem in Eq. (6.4) is now
transformed to a continuous optimization problem. It can be solved by the pro-
jected gradient descent (PGD) method as:

s(t) = PS[s(t−1) − ηt∇L(s(t−1))],

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6.2 Graph Adversarial Attacks 143

where PS(x) := arg mins∈S ∥s − x∥22 is the projection operator to project x
into the continuous space S. After obtaining the continuous s using the PGD
method, the discrete s can be randomly sampled from it. Specifically, each
element in the obtained s is regarded as the probability to sample 1 for the
corresponding element of the discrete s.

Integrated Gradient Guided Attack
The gradient information is utilized as scores to guide the attack in (Wu et al.,
2019). The attacker is allowed to modify both the graph structure and the fea-
tures. The attacker’s goal is to impair the node classification performance of
a single victimized node vi. When modifying the structure, the attacker T is
allowed to remove/add edges. The node features are assumed to be discrete
features such as word occurrence or categorical features with binary values.
Hence, the modification on both the graph structure and node features is lim-
ited to changing from either 0 to 1 or 1 to 0. This process can be guided by the
gradient information of the objective function (Wu et al., 2019).

Inspired by Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014b),
one way to find the the adversarial attack is to maximize the loss function
used to train the neural network with respective to the input sample. For the
victimized node vi with label yi, this loss can be denoted as:

Li = ℓ(fGNN(A,F;Θ)i, yi).

In FSGM, one-step gradient ascent method is utilized to maximize the loss and
consequently find the adversarial sample. However, in the graph setting, both
the graph structure and node features are discrete, which cannot be derived
by gradient-based methods. Instead, the gradient information corresponding
to each element in A and F is used to measure how their changes affect the
value of loss function. Thus, it can be used to guide the attacker to perform the
adversarial perturbation. However, as the attacker is only allowed to perform
modification from either 0 to 1 or 1 to 0, the gradient information may not
help too much for the following reason – given that the graph neural network
model is non-linear, the gradient on a single point cannot reflect the effect of
a large change such as from 0 to 1 or from 1 to 0. Hence, inspired by the in-
tegrated gradients (Sundararajan et al., 2017), discrete integrated gradients are
utilized to design the scores, which are called as the integrated gradient scores
(IG-scores). Specifically, the IG-score discretely accumulates the gradient in-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

144 Robust Graph Neural Networks

formation of changing from 0 to 1 or from 1 to 0 as:

IGH(i, j) =
Hi, j

m

m∑
k=1

∂Li(k
m (Hi, j − 0))
∂Hi, j

; 1→ 0, when Hi, j = 1;

IGH(i, j) =
1 −Hi, j

m

m∑
k=1

∂Li(0 + k
m (1 −Hi, j))
∂Hi, j

; 0→ 1, when Hi, j = 0;

where H could be either A or F, and m is a hyperparameter indicating the
number of discrete steps. We denote the IG-scores for the candidate changes
in A and F as IGA and IGF respectively, which measure how the corresponding
change in each element of A and F affects the lossLi. Then, the attacker T can
make the modification by selecting the action with the largest IG-score among
IGA and IGF. The attacker repeats this process as long as the resulting graph
G′ ∈ Φ(G), where Φ(G) is defined as in Eq. (6.1).

6.2.3 Gray-box Attack

In the gray-box attack setting, the attacker is not allowed to access the archi-
tecture and parameters of the victim model, but can access the data utilized
to train the model. Hence, instead of directly attacking the given model, the
gray-box attacks often first train a surrogate model with the provided train-
ing data and then attack the surrogate model on a given graph. They assume
that these attacks on the graph via the surrogate model can also damage the
performance of the victim model. In this section, we introduce representative
gray-box attack methods.

Nettack
The Nettack model (Zügner et al., 2018) targets on generating adversarial
graphs for the node classification task. A single node vi is selected as the victim
node to be attacked and the goal is to modify the structure and/or the features
of this node or its nearby nodes to change the prediction on this victim node.
Let us denote the label of the victim node vi as yi, where yi could be either the
ground truth or the label predicted by the victim model fGNN(A,F;Θ) on the
original clean graph G. The goal of the attacker is to modify the graph G to
G′ = {A′,F′} such that the model trained on the attacked graph G′ classifies
the node vi as a new class c. In general, the attacking problem can be described
as the following optimization problem:

arg maxG′∈Φ(G)

(
max
c,yi

ln Z′i,c − ln Z′i,yi

)
, (6.5)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6.2 Graph Adversarial Attacks 145

where Z′ = fGNN(A′,F′;Θ′) with the parameters Θ′ learned by minimizing
Eq. (5.49) on the attacked graph G′. Here, the space Φ(G) is defined based on
the limited budget constraint as Eq. (6.1) and two more constraints on the per-
turbations. These two constraints are: 1) the degree distribution of the attacked
graph should be close to that of the original graph; and 2) the distribution of
the feature occurrences (for the discrete features) of the attacked graph should
be close to that of the original graph. Solving the problem in Eq. (6.5) directly
is very challenging as the problem involves two dependent stages. The discrete
structure of the graph data further increases the difficulty. To address these
difficulties, we first train a surrogate model on the original clean graph data
G and then generate the adversarial graph by attacking the surrogate model.
The adversarial graph is treated as the attacked graph. When attacking graph
neural network model built upon GCN-Filters (see Section 5.3.2 for details
on GCN-Filter) for node classification, the following surrogate model with 2
GCN-Filters and no activation layers is adopted:

Zsur = softmax(ÃÃFΘ1Θ2) = softmax(Ã2FΘ), (6.6)

where the parameters Θ1 and Θ2 are absorbed in Θ. The parameters Θ are
learned from the original clean graph G with the provided training data. To
perform the adversarial attack based on the surrogate model, as in Eq. (6.5),
we aim to find these attacks that maximize the difference, i.e., maxc,yi lnZsur

i,c −

lnZsur
i,yi

. To further simplify the problem, the instance independent softmax nor-
malization is removed, which results in the following surrogate loss:

Lsur(A,F;Θ, vi) = max
c,yi

(
[Ã2FΘ]i,c − [Ã2FΘ]i,yi

)
.

Correspondingly the optimization problem can be expressed as:

argmaxG′∈Φ(G)Lsur(A′,F′;Θ, vi). (6.7)

While being much simpler, this problem is still intractable to be solved exactly.
Hence, a greedy algorithm is adopted, where we measure the scores of all the
possible steps (adding/deleting edges and flip features) as follows:

sstr(e;G(t), vi) := Lsur(A(t+1),F(t);Θ, vi)

s f eat(f ;G(t), vi) := Lsur(A(t),F(t+1);Θ, vi)

where G(t) = {A(t),F(t)} is the intermediate result of the algorithm at the step t,
A(t+1) is one step change from A(t) by adding/deleting the edge e and F(t+1) is
one step change away from F(t) by flipping the feature f . The score sstr(e;G(t), vi)
measures the impact of changing the edge e on the loss function, while s f eat(f ;G(t), vi)
indicates how changing the feature f affects the loss function. In each step, the

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

146 Robust Graph Neural Networks

greedy algorithm chooses the edge or the feature with the largest score to per-
form the corresponding modification, i.e. (adding/deleting edges or flipping
features). The process is repeated as long as the resulting graph is still in the
space of Φ(G).

Metattack
The Metattack method in (Zügner and Günnemann, 2019) tries to modify the
graph to reduce the overall node classification performance on the test set, i.e.,
the victim node set Vt = Vu. The attacker in Metattack is limited to modify
the graph structure. The constraint space Φ(G) is adopted from Nettack where
the limited budget constraint and the degree preserving constraint are used to
define the constraint space. The metattack is a poisoning attack. Thus, after
generating the adversarial attacked graph, we need to retrain the victim model
on the attacked graph. The goal of the attacker is to find such an adversarial
attacked graph that the performance of the retrained victim GNN model is
impaired. Hence, the attacker can be mathematically formulated as a bi-level
optimization problem as:

min
G′∈Φ(G)

Latk(fGNN(G′;Θ∗)) s.t. Θ∗ = arg min
Θ
Ltr(fGNN(G′;Θ)), (6.8)

where fGNN() is the victim model, and Ltr denotes the loss function used to
train the model as defined in Eq. (5.49) over the training setVl. The loss func-
tion Latk is to be optimized to generate the adversarial attack. In particular, the
lower-level optimization problem with respect to Θ is to find the best model
parametersΘ∗ given the attacked graph G′, while the higher-level optimization
problem is to minimizeLatk to generate the attacked graphG′. Since the goal of
the attacker is to impair the performance on the unlabelled nodes, ideally, Latk

should be defined based onVu. However, we cannot directly calculate the loss
based on Vu without the labels. Instead, one approach, which is based on the
argument that the model cannot generalize well if it has high training error, is
to define Latk as the negative of the Ltr, i.e., Latk = −Ltr. Another way to for-
mulateLatk is to first predict labels for the unlabeled nodes using a well trained
surrogate model on the original graphG and then use the predictions as the “la-
bels”. More specifically, let C′u denote the “labels” of unlabeled nodesVu pre-
dicted by the surrogate model. The loss function Lsel f = L(fGNN(G′;Θ∗),C′u)
measures the disagreement between the “labels” C′u and the predictions from
fGNN(G′;Θ∗) as in Eq. (5.49) over the set Vu. The second option of Latk can
be defined as Latk = −Lsel f . Finally, the Latk is defined as a combination of
the two loss functions as:

Latk = −Ltr − β · Lsel f ,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6.2 Graph Adversarial Attacks 147

where β is a parameter controlling the importance of Lsel f .
To solve the bi-level optimization problem in Eq. (6.8), the meta-gradients,

which have traditionally been used in meta-learning, are adopted. Meta-gradients
can be viewed as the gradients with respect to the hyper-parameters. In this
specific problem, the graph structure (or the adjacency matrix A) is treated as
the hyperparameters. The goal is to find the “optimal” structure such that the
loss function Latk is minimized. The meta-gradient with respect to the graph G
can be defined as:

∇meta
G

:= ∇GLatk(fGNN(G;Θ∗)) s.t. Θ∗ = arg min
Θ
Ltr(fGNN(G;Θ)). (6.9)

Note that the meta-gradient is related to the parameter Θ∗ as Θ∗ is a function
of the graph G according to the second part of Eq. (6.9). The meta-gradient
indicates how a small change in the graph G affects the attacker loss Latk,
which can guide us how to modify the graph.

The inner problem of Eq. (6.8) (the second part of Eq. (6.9)) typically does
not have an analytic solution. Instead, a differentiable optimization procedure
such as vanilla gradient descent or stochastic gradient descent (SGD) is adopted
to obtainΘ∗. This optimization procedure can be represented asΘ∗ = optΘLtr(fGNN(G;Θ)).
Thus, the meta-gradient can be reformulated as:

∇meta
G

:= ∇GLatk(fGNN(G;Θ∗)) s.t. Θ∗ = optΘLtr(fGNN(G;Θ)). (6.10)

As an illustration, the optΘ with vanilla gradient descent can be formalized
as:

Θt+1 = Θt − η · ∇ΘtLtr(fGNN(G;Θ)) for t = 0, . . . ,T − 1,

where η is the learning rate, Θ0 denotes the initialization of the parameters, T
is the total number of steps of the gradient descent procedure and Θ∗ = ΘT .
The meta-gradient can now be expressed by unrolling the training procedure
as follows:

∇meta
G
= ∇GLatk(fGNN(G;ΘT))

= ∇ fGNNLatk(fGNN(G;ΘT)) ·
[
∇G fGNN(G;ΘT) + ∇ΘT fGNN(G;ΘT) · ∇GΘT

]
,

where

∇GΘt+1 = ∇GΘt − η∇G∇ΘtLtr(fGNN(G;Θt)).

Note that the parameter Θt is dependent on the graph G; thus, the derivative
with respect to the graphG has to chain back all the way to the initial parameter
Θ0. After obtaining the meta-gradient, we can now use it to update the graph

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

148 Robust Graph Neural Networks

as:

G(k+1) = G(k) − γ∇G(k)Latk(fGNN(G;ΘT)). (6.11)

The gradients are dense; thus, the operation in Eq. (6.11) results in a dense
graph, which is not desired. Furthermore, as the structure and the parameters
of the model are unknown in the gray-box setting, the meta-gradients cannot
be obtained. To solve these two issues, a greedy algorithm utilizing the meta-
gradient calculated on a surrogate model as the guidance to choose the action
is further proposed in (Zügner and Günnemann, 2019). We next introduce the
meta-gradient based greedy algorithm. The same surrogate model as Eq. (6.6)
is utilized to replace fGNN(G;Θ) in Eq. (6.8). A score to measure how a small
change in the i, j-th element of the adjacency matrix A affects the loss function
Latk is defined by using the meta-gradient as:

s(i, j) = ∇meta
Ai, j
· (−2 · Ai, j + 1),

where the term (−2 · Ai, j + 1) is used to flip the sign of the meta-gradients
when Ai, j = 1, i.e., the edge between nodes vi and v j exists and can only
be removed. After calculating the score for each possible action based on the
meta-gradients, the attacker takes the action with the largest score. For a chosen
node pair (vi, v j), the attacker adds an edge between them if Ai, j = 0 while
removing the edge between them if Ai, j = 1. The process is repeated as long
as the resulting graph is in the space Φ(G).

6.2.4 Black-box Attack

In the black-box attack setting, the victim model’s information is not accessible
to the attacker. The attacker can only query the prediction results from the
victim model. Most methods in this category adopt reinforcement learning to
learn the strategies of the attacker. They treat the victim model as a black-box
query machine and use the query results to design the reward for reinforcement
learning.

RL-S2V
The RL-S2V method is a black-box attack model using reinforcement learn-
ing (Dai et al., 2018). In this setting, a target classifier fGNN(G;Θ) is given with
the parameters Θ learned and fixed. The attacker is asked to modify the graph
such that the classification performance is impaired. The RL-S2V attacker can
be used to attack both the node classification task and the graph classification
task. The RL-S2V attacker only modifies the graph structure and leaves the
graph features untouched. To modify the graph structure, the RL-S2V attacker

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6.2 Graph Adversarial Attacks 149

is allowed to add or delete edges from the original graph G. The constraint
space for RL-S2V can be defined as:

Φ(G) = {G′; |(E − E′) ∪ (E′ − E)| ≤ ∆} (6.12)

with E′ ⊂ N(G, b),

where E and E′ denote the edge sets of the original graph G and the attacked
graph G′, respectively. ∆ is the budget limit to remove and add edges. Further-
more, N(G, b) is defined as:

N(G, b) = {(vi, v j) : vi, v j ∈ V, dis(G)(vi, v j) ≤ b}.

where dis(G)(vi, v j) denotes the shortest path distance between node vi and node
v j in the original graph G.N(G, b) includes all edges connecting nodes at most
b-hop away in the original graph. The attacking procedure of RL-S2V is mod-
eled as a Finite Markov Decision Process (MDP), which can be defined as
follows:

• Action: As mentioned before, there are two types of actions: adding and
deleting edges. Furthermore, only those actions that lead to a graph in the
constraint space Φ(G) are considered as valid actions.

• State: The state st at the time step t is the intermediate graph Gt, which is
obtained by modifying the intermediate graph Gt−1 by a singe action.

• Reward: The purpose of the attacker is to modify the graph such that the
targeted classifier would be fooled. A reward is only granted when the at-
tacking process (MDP) has been terminated. More specifically, a positive
reward r(st, at) = 1 is granted if the targeted model makes a different pre-
diction from the original one; otherwise, a negative reward of r(st, at) = −1
is granted. For all the intermediate steps, the reward is set to r(st, at) = 0.

• Terminal: The MDP has a total budget of ∆ to perform the actions. The
MDP is terminated once the agent reaches the budget ∆, i.e., the attacker
has modified ∆ edges.

Deep Q-learning is adopted to learn the MDP (Dai et al., 2018). Specifically,
Q-learning (Watkins and Dayan, 1992) is to fit the following Bellman optimal
equation:

Q∗(st, at) = r(st, at) + γmax
a′

Q∗(st+1, a′),

In particular, Q∗() is a parametrized function to approximate the optimal ex-
pected future value (or the expected total reward of all future steps) given a
state-action pair and γ is the discount factor. Once the Q∗() function is learned

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

150 Robust Graph Neural Networks

during training, it implicitly indicates a greedy policy:

π(at |st; Q∗) = arg max
at

Q∗(st, at).

With the above policy, at state st, the action at which can maximize the Q∗()
function is chosen. The Q∗() function can be parameterized with GNN models
for learning the graph-level representation, as the state st is a graph.

Note that an action at involves two nodes, which means the search space
for an action is O(N2). This might be too expensive for large graphs. Hence,
in (Dai et al., 2018), a decomposition of the action at has been proposed as:

at = (a(1)
t , a(2)

t),

where a(1)
t is the sub-action to choose the first node and a(2)

t is the sub-action
to choose the second node. Hierarchical Q∗() function is designed to learn the
policies for the decomposed actions.

ReWatt
ReWatt (Ma et al., 2020a) is a black-box attacker, which targets on the graph
classification task. In this setting, the graph classification model fGNN(G;Θ)
as defined in Section 5.5.2 is given and fixed. The attacker cannot access
any information about the model except querying prediction results for graph
samples. It is argued in (Ma et al., 2020a) that the operations such as delet-
ing/adding edges are not unnoticeable enough. Hence, a less noticeable op-
eration, i.e., the rewiring operation, is proposed to attack graphs. A rewiring
operation rewires an existing edge from one node to another node, which can
be formally defined as below.

Definition 6.1 (Rewiring Operation) A rewiring operation a = (vfir, vsec, vthi)
involves three nodes, where vsec ∈ N(vfir) and vthi ∈ N

2(vfir)/N(vfir) with
N2(vfir) denoting the 2-hop neighbors of the node vi. The rewiring operation
a deletes the existing edge between nodes v f ir and vsec and add a new edge
between nodes vfir and vthi.

The rewiring operation is theoretically and empirically shown to be less
noticeable than other operations such as deleting/adding edges in (Ma et al.,
2020a). The constraint space of the ReWatt attack is defined based on the
rewiring operation as:

Φ(G) = {G′|if G′ can be obtained by applying at most ∆ rewiring operations to G},

where the budget ∆ is usually defined based on the size of the graph as p ·
|E| with p ∈ (0, 1). The attacking procedure is modeled as a Finite Markov
Decision Process (MDP), which is defined as:

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6.3 Graph Adversarial Defenses 151

• Action: The action space consists of all the valid rewiring operations as
defined in Definition 6.1.

• State: The state st at the time step t is the intermediate graph Gt, which is
obtained by applying one rewiring operation on the intermediate graph Gt−1.

• State Transition Dynamics: Given an action at = (vfir, vsec, vthi), the state is
transited from the state st to state st+1 by deleting an edge between vfir and
vsec, and adding an edge to connect vfir with vthi in the state st.

• Reward Design: The goal of the attacker is to modify the graph such that
the predicted label is different from the one predicted for the original graph
(or the initial state s1). Furthermore, the attacker is encouraged to take few
actions to achieve the goal so that the modifications to the graph structure
are minimal. Hence, a positive reward is granted if the action leads to the
change of the label; otherwise, a negative reward is assigned. Specifically,
the reward R(st, at) can be defined as follows:

R(st, at) =
{

1 if fGNN(st;Θ) , fGNN(s1;Θ);
nr if fGNN(st;Θ) = fGNN(s1;Θ).

where nr is the negative reward, which is adaptive dependent on the size of
graph as nr = −

1
p·|E| . Note that we abuse the definition fGNN(G;Θ) a little bit

to have the predicted label as its output.
• Termination: The attacker stops the attacking process either when the pre-

dicted label has been changed or when the resulting graph is not in the con-
straint space Φ(G).

Various reinforcement learning techniques can be adopted to learn this MDP.
Specifically, in (Ma et al., 2020a), graph neural networks based policy net-
works are designed to choose the rewiring actions according to the state and
the policy gradient algorithm (Sutton et al., 2000) is employed to train the pol-
icy networks.

6.3 Graph Adversarial Defenses

To defend against the adversarial attacks on graph-structured data, various de-
fense techniques have been proposed. These defense techniques can be majorly
classified to four different categories: 1) graph adversarial training, which in-
corporates adversarial samples into the training procedure to improve the ro-
bustness of the models; 2) graph purification, which tries to detect the adver-
sarial attacks and remove them from the attacked graph to generate a clean
graph; 3) graph attention, which identifies the adversarial attacks during the

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

152 Robust Graph Neural Networks

training stage and gives them less attention while training the model; and 4)
graph structure learning, which aims to learn a clean graph from the attacked
graph while jointly training the graph neural network model. Next, we intro-
duce some representative methods in each category.

6.3.1 Graph Adversarial Training

The idea of adversarial training (Goodfellow et al., 2014b) is to incorporate the
adversarial examples into the training stage of the model; hence, the robustness
of the model can be improved. It has demonstrated its effectiveness in training
robust deep models in the image domain (Goodfellow et al., 2014b). There are
usually two stages in adversarial training: 1) generating adversarial attacks,
and 2) training the model with these attacks. In the graph domain, the adver-
sarial attackers are allowed to modify the graph structure and/or node features.
Hence, the graph adversarial training techniques can be categorized according
to the adversarial attacks they incorporate: 1) only attacks on graph structure
A; 2) only attacks on node features F; and 3) attacks on both graph structure
A and node features F. Next, we introduce representative graph adversarial
training techniques.

Graph Adversarial Training on Graph Structure
In (Dai et al., 2018), an intuitive and simple graph adversarial training method
is proposed. During the training stage, edges are randomly dropped from the
input graph to generate the “adversarial attacked graphs”. While being simple
and not very effective to improve the robustness, this is the first technique to
explore the adversarial training on graph-structured data. Later on, a graph
adversarial training technique based on the PGD topology attack is proposed.
In detail, this adversarial training procedure can be formulated as the following
min-max optimization problem:

min
Θ

max
s∈S
−L(s;Θ), (6.13)

where the objective L(s;Θ) is defined as similar to Eq. (6.4) over the entire
training setVl as:

L(s;Θ) =
∑

vi∈Vl

ℓ(fGNN(G′;Θ)i, yi)

subject to ∥s∥0 ≤ ∆, s ∈ {0, 1}N×(N−1)/2.

Solving the min-max problem in Eq. (6.13) is to minimize the training loss
under the perturbation in graph structure generated by the PGD topology at-
tack algorithm. The minimization problem and the maximization problem are

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6.3 Graph Adversarial Defenses 153

processed in an alternative way. In particular, the maximization problem can
be solved using the PGD algorithm, as introduced in Section 6.2.2. It results
in a continuous solution of s. The non-binary adjacency matrix A is gener-
ated according to the continuous s. It serves as the adversarial graph for the
minimization problem to learn the parameters Θ for the classification model.

Graph Adversarial Training on Node Features
GraphAT (Feng et al., 2019a) incorporates node features based adversarial
samples into the training procedure of the classification model. The adversarial
samples are generated by perturbing the node features of the clean node sam-
ples such that the neighboring nodes are likely to be assigned to different labels.
One important assumption in graph neural network models is that neighboring
nodes tend to be similar with each other. Thus, the adversarial attacks on the
node features make the model likely to make mistakes. These generated ad-
versarial samples are then utilized in the training procedure in the form of a
regularization term. Specifically, the graph adversarial training procedure can
be expressed as the following min-max optimization problem:

min
Θ
Ltrain + β

∑
vi∈V

∑
v j∈N(vi)

d(fGNN(A,F ⋆ rg
i ;Θ)i, fGNN(A,F;Θ) j);

rg
i = arg max

ri,∥ri∥≤ϵ

∑
v j∈N(vi)

d(fGNN(A,F ⋆ ri;Θ)i, fGNN(A,F;Θ) j); (6.14)

where the maximization problem generates the adversarial node features for
the nodes, which break the smoothness between the connected nodes. While
the minimization problem learns the parameters Θ, which not only enforce
a small training error but also encourage the smoothness between the adver-
sarial samples and their neighbors via the additional regularization term. In
Eq. (6.14), Ltrain is the loss defined in Eq. (5.49), ri ∈ R

1×d is a row-wise ad-
versarial vector and the operation F ⋆ ri means to add ri into the i-th row of
F, i.e., adding adversarial noise to the node vi’s features. fGNN(A,F ⋆ rg

i ;Θ)i

denotes the i-th row of fGNN(A,F ⋆ rg
i ;Θ), which is the predicted logits for

node vi. The function d(·, ·) is the KL-divergence (Joyce, 2011), which mea-
sures the distance between the predicted logits. The minimization problem and
the maximization problem are processed in an alternative way.

Graph Adversarial Training on Graph Structures and Node Features
Given the challenges from the discrete nature of the graph structure A and the
node features F, a graph adversarial training technique proposes to modify the
continuous output of the first graph filtering layer F(1) (Jin and Zhang, n.d.).
The method generates adversarial attacks for the first hidden representation

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

154 Robust Graph Neural Networks

F(1) and incorporates them into the model training stage. Specifically, it can be
modeled as the following min-max optimization problem:

min
Θ

max
ζ∈D
Ltrain

(
A,F(1) + ζ;Θ

)
, (6.15)

where the maximization problem generates a small adversarial perturbation
on the first layer hidden representation F(1), which indirectly represents the
perturbation in the graph structure A and the node features F. The minimization
problem learns the parameters of the model while incorporating the generated
perturbation into the learning procedure. ζ is the adversarial noise to be learned
and D denotes the constraint domain of the noise, which is defined as follows:

D = {ζ; ∥ζ i∥2 ≤ ∆};

where ζ i denotes the i-th row of ζ and ∆ is a predefined budget. Note that
in Eq. (6.15), Ltrain

(
A,F(1) + ζ;Θ

)
is overloaded to denote a similar loss as

Eq. (5.49) except that it is based on the perturbed hidden representation F(1)+ζ.
Similar to other adversarial training techniques, the minimization problem and
the maximization problem are processed in an alternative way.

6.3.2 Graph Purification

Graph purification based defense techniques have been developed to defend
against the adversarial attacks on graph structure. Specifically, these methods
try to identify adversarial attacks in a given graph and remove them before us-
ing the graph for model training. Hence, most of the graph purification methods
can be viewed as performing pre-processing on graphs. Next, we introduce two
defense techniques based on graph purification.

Removing Edges with Low Feature Similarity
Empirical explorations show that many adversarial attack methods (e.g., net-
tack and IG-FGSM) tend to add edges to connect nodes with significantly dif-
ferent node features (Wu et al., 2019; Jin et al., 2020a). Similarly, when remov-
ing edges, these attack methods tend to remove the edges between nodes with
similar features. Hence, based on these observations, a simple and efficient
approach is proposed in (Wu et al., 2019), which tries to remove the edges be-
tween nodes with very different features. More specifically, a scoring function
is proposed to measure the similarity between the node features. For example,
for binary features, the Jaccard similarity (Tan et al., 2016) is adopted as the
scoring function. The edges with scores that are smaller than a threshold are
then removed from the graph. The pre-processed graph is then employed for
training the graph neural network models.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6.3 Graph Adversarial Defenses 155

Low-rank Approximation of Adjacency Matrix
Empirical studies are carried out to analyze the adversarial perturbations gen-
erated by nettack (Entezari et al., 2020; Jin et al., 2020a). It turns out that
Netttack tends to perturb the graph structure to increase the adjacency matrix’s
rank. It is argued that the number of low-value singular values of the adja-
cency matrix is increased. Hence, Singular Value Decomposition(SVD) based
pre-processing method is proposed in (Entezari et al., 2020) to remove the
adversarial perturbation added into the graph structure. Specifically, given an
adjacency matrix A of a graph, SVD is used to decompose it, and then only the
top-k singular values are kept to reconstruct (approximate) the adjacency ma-
trix. The reconstructed adjacency matrix is then treated as the purified graph
structure and utilized to train the graph neural network models.

6.3.3 Graph Attention

Instead of removing the adversarial attacks from the graph as the graph purification-
based methods, the graph attention-based methods aim to learn to focus less
on the nodes/edges affected by the adversarial attacks in the graph. The graph
attention based defense techniques are usually end-to-end. In other words, they
include the graph attention mechanism as a building component in the graph
neural network models. Next, we introduce two attention based defense tech-
niques.

RGCN: Modelling Hidden Representations with Gaussian Distribution
To improve the robustness of the graph neural network models, instead of
plain vectors, multivariate Gaussian distribution is adopted to model the hid-
den representations in (Zhu et al., 2019a). The adversarial attacks generate
perturbations on the graph structure, which, in turn, cause abnormal effects on
the node representations. While the plain-vector based hidden representations
cannot adapt themselves to the adversarial impacts, the Gaussian distribution
based hidden representations can absorb the effects caused by the adversarial
attacks and thus can lead to more robust hidden representations. Furthermore,
a variance-based attention mechanism is introduced to prevent the adversarial
effects from propagation across the graph. Specifically, the nodes affected by
adversarial attacks typically have large variances as the attacks tend to connect
nodes with very different features and/or from different communities. Hence,
when performing neighbor information aggregation to update node features,
less attention is assigned to those neighbors with large variances to prevent the
adversarial effects from propagation. Next, we describe the details of RGCN-
Filter – the graph filter built upon the intuitions above.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

156 Robust Graph Neural Networks

RGCN-Filter is built upon the GCN-Filter as described in Eq. (5.22). For
the ease of description, we recall Eq. (5.22) as follows:

F′i =
∑

v j∈N(vi)∪{vi}

1√
d̃id̃ j

F jΘ,

where d̃i = D̃i,i. Instead of plain vectors, RGCN-Filter utilizes Gaussian distri-
butions to model the node representations. For the node vi, its representation is
denoted as:

Fi ∼ N(µi, diag(σi)),

where µi ∈ R
d is the mean of the representations and diag(σi) ∈ Rd×d is the

diagonal variance matrix of the representations. When updating the node repre-
sentations, it has two aggregation processes on the mean and the variance of the
representations. In addition, an attention mechanism based on the variance of
representations is introduced to prevent the adversarial effects from propagat-
ing across the graph. Specifically, for nodes with larger variances, smaller at-
tention scores are assigned. The attention score for node vi is modeled through
a smooth exponential function as:

ai = exp (−γσi) ,

where γ is a hyperparameter. With the definition of the Gaussian based repre-
sentations and the attention scores, the update process for the representation of
node vi can be stated as:

F′i ∼ N(µ′i , diag(σ′i)),

where

µ′i = α

 ∑
v j∈N(vi)∪{vi}

1√
d̃id̃ j

(
µ j ⊙ a j

)
Θµ

;
σ′i = α

 ∑
v j∈N(vi)∪{vi}

1
d̃id̃ j

(
σ j ⊙ a j ⊙ a j

)
Θσ

.
Here α denotes non-linear activation functions, ⊙ is the Hadamard multiplica-
tion operator, Θµ and Θσ are learnable parameters to transform the aggregated
information of mean and variance, respectively.

PA-GNN: Transferring Robustness From Clean Graphs
Instead of penalizing the affected nodes as RGCN, PA-GNN (Tang et al., 2019)
aims to penalize the adversarial edges for preventing the adversarial effects
from propagation through the graph. Specifically, it aims to learn an attention
mechanism that can assign low attention scores to adversarial edges. However,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

6.3 Graph Adversarial Defenses 157

typically, we do not have knowledge about the adversarial edges. Hence, PA-
GNN aims to transfer this knowledge from clean graphs where adversarial
attacks can be generated to serve as supervision signals to learn the desired
attention scores.

The PA-GNN model is built upon the graph attention network as described
in Eq. (5.27), which can be written as:

F′i =
∑

v j∈N(vi)∪{vi}

ai jF jΘ, (6.16)

where ai j denotes the attention score for aggregating information from node v j

to node vi through the edge ei j. Intuitively, we desire the attention scores of the
adversarial edges to be small so that the adversarial effects can be prevented
from propagation. Assume that we know a set of adversarial edges, which is
denoted as Ead, and the set of the remaining “clean” edges can be denoted as
E/Ead. To ensure that the attention scores for the adversarial edges are small,
the following term can be added to the training loss to penalize the adversarial
edges.

Ldist = −min

η, Eei j∈E/Ead
1≤l≤L

a(l)
i j − E

ei j∈Ead
1≤l≤L

a(l)
i j

where a(l)

i j is the attention score assigned to edge ei j in the l-th graph filtering
layer, L is the total number of graph filtering layers in the model, and η is a
hyper parameter controlling the margin between the two expectations. The ex-
pectations of the attention coefficients are estimated by their empirical means
as:

E
ei j∈E\Ead

1≤l≤L

a(l)
i j =

1
L|E\Ead |

L∑
l=1

∑
ei j∈E\Ead

a(l)
i j

E
ei j∈Ead
1≤l≤L

a(l)
i j =

1
L|Ead |

L∑
l=1

∑
ei j∈Ead

a(l)
i j ,

where | · | denotes the cardinality of a set. To train the classification model while
assigning lower attention scores to the adversarial edges, we combine the loss
Ldist with the semi-supervised node classification loss Ltrain in Eq. (5.49) as:

min
Θ
L = min

Θ
(Ltrain + λLdist) (6.17)

where λ is a hyper-parameter balancing the importance between the two types
of loss. So far, the set of adversarial edges Ead is assumed to be known, which is
impractical. Hence, instead of directly formulating and optimizing Eq. (6.17),

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

158 Robust Graph Neural Networks

…Clean
Graphs

…Perturbed
Graphs

Adversarial
Attacks

Meta
Optimization

Fine-Tuning

Figure 6.1 The overall framework of PA-GNN

we try to transfer the ability of assigning low attention scores to adversarial
edges from those graphs with known adversarial edges. To obtain the graphs
with known adversarial edges, we collect clean graphs from similar domains
as the given graph, and apply existing adversarial attacks such as metattack to
generate attacked graphs. Then, we can learn the ability from these attacked
graphs and transfer it to the given graph. Next, we first briefly discuss the
overall framework of PA-GNN and then detail the process of learning the at-
tention mechanism and transferring its ability to the target graph. As shown
in Figure 6.1, given a set of K clean graphs denoted as {G1, · · · ,GK}, we use
existing attacking methods such as metattack to generate a set of adversar-
ial edges Ei

ad for each graph. Furthermore, the node set Vi in each graph is
split into the training set Vi

l and the test set Vi
u. Then, we try to optimize the

loss function in Eq. (6.17) for each graph. Specifically, for the graph Gi, we
denote its corresponding loss as Li. As inspired by the meta-optimization al-
gorithm MAML (Finn et al., 2017), all graphs share the same initialization Θ
and the goal is to learn these parameters Θ that can be easily adapted to learn-
ing the task on each graph, separately. As shown in Figure 6.1, the ideal shared
initialization parameters Θ are learned through meta-optimization, which we
will detail later. These shared parameters Θ are considered to carry the ability
of assigning lower attention scores to the adversarial edges. To transfer this
ability to the given graph G, we use the shared parameters Θ as the initial-
ization parameters to train the graph neural network model on graph G and
the obtained fine-tuned parameters are denoted as ΘG. Next, we describe the
meta-optimization algorithm adopted from MAML to learn the optimal shared
parameters Θ.

The optimization process first adapts (fine-tunes) the parameters Θ to each
graph Gi by using the gradient descent method as:

Θ′i = Θ − α∇ΘL
tr
i (Θ),

where Θ′i is the specific parameters for the learning task on the graph Gi and

6.3 Graph Adversarial Defenses 159

Ltr
i denotes the loss in Eq.(6.17) evaluated on the corresponding training set
Vi

l. The test sets of all the graphs {V1
u, . . . ,V

K
u } are then used to update the

shared parametersΘ such that each of the learned classifiers can work well for
each graph. Hence, the objective of the meta-optimization can be summarized
as:

min
Θ

K∑
i=1

Lte
i
(
Θ′i

)
= min

Θ

K∑
i=1

Lte
i

(
θ − α∇ΘL

tr
i (Θ)

)
,

where Lte
i

(
Θ′i

)
denotes the loss in Eq. (6.17) evaluated on the corresponding

test setVi
u. The shared parameters Θ can be updated using SGD as:

Θ← Θ − β∇Θ

K∑
i=1

Lte
i
(
Θ′i

)
.

Once the shared parametersΘ are learned, they can be used as the initialization
for the learning task on the given graph G.

6.3.4 Graph Structure Learning

In Section 6.3.2, we introduced the graph purification based defense tech-
niques. They often first identify the adversarial attacks and then remove them
from the attacked graph before training the GNN models. Those methods typ-
ically consist of two stages, i.e., the purification stage and the model training
stage. With such a two-stage strategy, the purified graphs might be sub-optimal
to learn the model parameters for down-stream tasks. In (Jin et al., 2020b), an
end-to-end method, which jointly purifies the graph structure and learns the
model parameters, is proposed to train robust graph neural network models.
As described in Section 6.3.2, the adversarial attacks usually tend to add edges
to connect nodes with different node features and increase the rank of the ad-
jacency matrix. Hence, to reduce the effects of the adversarial attacks, Pro-
GNN (Jin et al., 2020b) aims to learn a new adjacency matrix S, which is close
to the original adjacency matrix A, while being low-rank and also ensuring
feature smoothing. Specifically, the purified adjacency matrix S and the model
parameters Θ can be learned by solving the following optimization problem:

min
Θ,S
Ltrain(S,F;Θ) + ∥A − S∥2F + β1∥S∥1 + β2∥S∥∗ + β3 · tr(FT LF), (6.18)

where the term ∥A − S∥2F is to make sure that the learned matrix S is close
to the original adjacency matrix; the L1 norm of the learned adjacency matrix
∥S∥1 allows the learned matrix S to be sparse; ∥S∥∗ is the nuclear norm to en-
sure that the learned matrix S is low-rank; and the term tr(FT LF) is to force

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

160 Robust Graph Neural Networks

the feature smoothness. Note that the feature matrix F is fixed, and the term
tr(FT LF) force the Laplacian matrix L, built upon S, to ensure that the features
are smooth. The hyper-parameters β1, β2 and β3 control the balance between
these terms. The matrix S and the model parameters Θ can be optimized alter-
natively as:

• Update Θ: We fix the matrix S and remove the terms that are irrelevant to S
in Eq. (6.18). The optimization problem is then re-formulated as:

min
Θ
Ltrain(S,F;Θ).

• Update S: We fix the model parameters Θ and optimize the matrix S by
solving the following optimization problem:

min
S
Ltrain(S,F;Θ) + ∥A − S∥2F + α∥S∥1 + β∥S∥∗ + λ · tr(FT LF).

6.4 Conclusion

In this chapter, we focus on the robustness of the graph neural networks, which
is critical for applying graph neural network models to real-world applications.
Specifically, we first describe various adversarial attack methods designed for
graph-structured data including white-box, gray-box and black-box attacks.
They demonstrate that the graph neural network models are vulnerable to de-
liberately designed unnoticeable perturbations on graph structures and/or node
features. Then, we introduced a variety of defense techniques to improve the
robustness of the graph neural network models including graph adversarial
training, graph purification, graph attention and graph structure learning.

6.5 Further Reading

The research area of robust graph neural networks is still fast evolving. Thus, a
comprehensive repository for graph adversarial attacks and defenses has been
built (Li et al., 2020a). The repository enables systematical experiments on
existing algorithms and efficient new algorithm development. An empirical
study has been conducted based on the repository (Jin et al., 2020a). It provides
deep insights about graph adversarial attacks and defenses that can deepen our
knowledge and foster this research field. In addition to the graph domain, there
are adversarial attacks and defenses in other domains such as images (Yuan
et al., 2019; Xu et al., 2019b; Ren et al., 2020) and texts (Xu et al., 2019b;
Zhang et al., 2020).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

7
Scalable Graph Neural Networks

7.1 Introduction

Graph Neural Networks suffer from severe scalability issue, which prevents
them from being adopted to large-scale graphs. Take the GCN-Filter based
model for the node classification task as an example, where we adopt gradient-
based methods to minimize the following loss function (the same as Eq. (5.49)):

Ltrain =
∑

vi∈Vl

ℓ(fGCN(A,F;Θ)i, yi), (7.1)

where ℓ() is a loss function and fGCN(A,F;Θ) consists of L GCN-Filter layers
as described in Eq. (5.21) as:

F(l) = ÂF(l−1)Θ(l−1), l = 1, . . . , L. (7.2)

where Â is utilized to denote D̃− 1
2 ÃD̃− 1

2 and F(0) = F. For the convenience of
analysis, the node representations in all layers are assumed to have the same
dimension d. Note that, in this formulation, we ignore the activation layer that
can be added between the graph filtering layers. The parameters Θ in Eq.(7.1)
include Θ(l), l = 1, . . . , L and the parameters Θ2 to perform the prediction as
Eq. (5.47). One step of the gradient descent algorithm to minimize the loss can
be described as:

Θ← Θ − η · ∇ΘLtrain,

where η is the learning rate and the gradient∇ΘLtrain needs to be evaluated over
the entire training setVl. Furthermore, due to the design of the GCN-Filter lay-
ers as shown in Eq. (7.2), when evaluating Ltrain in the forward pass, all nodes
in V are involved in the calculation as all node representations are computed
in each layer. Hence, in the forward pass of each training epoch, the represen-
tations for all nodes and the parameters in each graph filtering layer need to be

161

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

162 Scalable Graph Neural Networks

1-hop neighbors

2-hop neighbors

L-hop neighbors

……

……

L-th layer

(L-1)-th layer

1-st layer

Figure 7.1 The aggregation process

stored in the memory, which becomes prohibitively large when the scale of the
graph grows. Specifically, we can calculate the required memory explicitly as
follows. During the forward pass, the normalized adjacency matrix Â, the node
representations in all layers F(l) and the parameters in all layers Θ(l) need to be
stored in the memory, which requires O(|E|), O(L · |V| ·d) and O(L ·d2), respec-
tively. Thus, in total, the required memory is O(|E|+L · |V|·d+L ·d2). When the
size of the graph is large, i.e., |V| and/or |E| are large, it becomes impossible to
fit them into the memory. Furthermore, the calculation in the form of Eq. (7.2)
is not efficient as the final representations (or the representations after the L-th
layer) for the unlabeled nodes inVu are also calculated, although they are not
required for evaluating Eq. (7.1). In detail, O(L·(|E|·d+|V|·d2)) = O(L·|V|·d2)
operations are required to perform the full epoch of the forward process. As in
traditional deep learning scenario, a natural idea to reduce the memory require-
ment during training is to adopt Stochastic Gradient Descent (SGD). Instead of
using all the training samples, it utilizes a single training sample (or a subset of
training samples) to estimate the gradient. However, adopting SGD in graph-
structured data is not as convenient as that in the traditional scenario since the
training samples in Eq. (7.1) are connected to other labeled/unlabeled samples
in the graph. To calculate the loss ℓ(fGCN(A,F;Θ)i, yi) for node vi, the node
representations of many other nodes (or even the entire graph as indicated by
the adjacency matrix Â) are also involved due to the graph filtering operations
as described in Eq. (7.2). To perceive the calculation more clearly, we analyze
Eq. (7.2) from a local view for a node vi as:

F(l)
i =

∑
v j∈Ñ(vi)

Âi, jF(l−1)
j Θ(l−1), l = 1, . . . , L, (7.3)

which takes the form of aggregating information from neighboring nodes. Note
that we use F(l)

i to denote the node representation for node vi after l-th graph fil-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

7.1 Introduction 163

tering layer; Âi, j to indicate the i, j-th element of Â; and Ñ(vi) = N(vi)∪{vi} to
denote the set of neighbors of node vi including itself. Hence, clearly, as shown
in Figure 7.1, from a top-down perspective, i.e., from the L-th layer to the input
layer, to calculate the representation of node vi in the L-th graph filtering layer
(the output layer), only the representations of its neighbors (including itself) in
the (L−1)-th layer are required. To calculate the (L−1)-th layer representation
for a node v j ∈ Ñ(vi), all the (L−2)-th layer representations of its neighbors are
required. The neighbors of all nodes in Ñ(vi) are the “neighbors of neighbors”
of node vi, i.e., the 2-hop neighbors of node vi. In general, computing the loss
term for node vi needs the representation of node vi after the L-th layer and its
l-hop neighbors are required by the (L − l + 1)-th graph filtering layer. Specif-
ically, its L-hop neighbors are required by the input layer (i.e. the first layer).
Hence, for the entire process of calculation, all nodes with the L-hop of node
vi are involved. Based on this analysis, we rewrite the loss for the node vi as:

ℓ(fGCN(A,F;Θ)i, yi) = ℓ(fGCN(A{NL(vi)},F{NL(vi)};Θ), yi), (7.4)

where NL(vi) is the set of nodes within L-hop away of node vi, i.e., all nodes
shown in Figure 7.1, A{NL(vi)} denotes the induced structure on NL(vi) (i.e.,
the rows and columns in the adjacent matrix corresponding to nodes inNL(vi)
are retrieved) and F{NL(vi)} indicates the input features for nodes in NL(vi).
Typically, the mini-batch SGD algorithm, where a min-batch of training in-
stances are sampled from Vl to estimate the gradient, is used for parameter
updates. The batch-wise loss function can be expressed as:

LB =
∑
vi∈B

ℓ(fGCN(A{NL(vi)},F{NL(vi)};Θ), yi), (7.5)

where B ⊂ Vl is the sampled mini-batch. However, even if SGD is adopted for
optimization, the memory requirement can be still high. The major issue is that,
as shown in Figure 7.1, the node setNL(vi) expands exponentially as the num-
ber of the graph filtering layers L increases. Specifically, the number of nodes
in NL(vi) is in the order of degL, where deg denotes the average degree of the
nodes in the graph. Thus, to perform SGD optimization, O(degL · d) memory
is required to store the node representations. Furthermore, in practice, we need
to prepare the memory that is sufficient for the “worst” batch which requires
the “most” memory instead of the average one. This could lead to quite a lot of
memory when there is a node with a large degree in the batch, as many other
nodes are involved due to the inclusion of this large degree node. This issue
of exponentially growing neighborhood is usually referred as “neighborhood
expansion” or “neighborhood explosion” (Chen et al., 2018a,b; Huang et al.,
2018). When L is larger than the diameter of the graph, we haveNL(vi) = V. It

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

164 Scalable Graph Neural Networks

means that the entire node set is required for calculation, which demonstrates
an extreme case of neighborhood explosion. Furthermore, the “neighborhood
explosion” issue also impacts the time efficiency of the SGD algorithm. Specif-
ically, the time complexity to calculate the final representation F(L)

i for the node
vi is O(degL ·(deg ·d+d2)), which is O(degL ·d2) as deg is usually much smaller
than d. Then, the time complexity to run an epoch over the entire training set
Vl is O(|Vl| · degL · d2) when we assume that each batch only contains a sin-
gle training sample. When the batch size |B| > 1, the time complexity for an
epoch can be lower, as in each batch B, some of the involved nodes may ex-
ist in NL(vi) for several samples vi in the batch B and their representations
can be shared during the calculation. Compared to the full gradient algorithm,
which takes O(L · |V| · d2) to run a full epoch, the time complexity for SGD
can be even higher when L is large although no extra final representations for
unlabeled nodes are calculated.

Although we introduce the “neighborhood explosion” issue for the GNN
models with GCN-Filters, this issue exists in GNN models with other graph
filters as long as they follow a neighborhood aggregation process as Eq. (7.3).
In this chapter, without loss of generality, the discussion and analysis are based
on the GCN-Filters. To solve the “neighborhood explosion” issue and corre-
spondingly improve the scalability of graph neural network models, various
neighborhood sampling methods have been proposed. The main idea of sam-
pling methods is to reduce the number of nodes involved in the calculation
of Eq. (7.5) and hence lower the required time and memory to perform the
calculation. There are mainly three types of sampling methods:

• Node-wise sampling methods. To calculate the representation for a node vi

with Eq. (7.3), in each layer, a set of nodes is sampled from its neighbors.
Then, instead of aggregating information from its entire neighborhood, the
node representation will only be calculated based on these sampled nodes.

• Layer-wise sampling methods. A set of nodes is sampled for the node rep-
resentation calculation of the entire layer. In other words, to calculate F(l)

i
and F(l)

j for nodes vi and v j, the same set of sampled nodes are utilized to
perform the calculation.

• Subgraph-wise sampling methods. A subgraph is sampled from the orig-
inal graph. Then, the node representation learning is based on the sampled
subgraph.

In this chapter, we detail and analyze representative algorithms from each
group of sampling methods.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

7.2 Node-wise Sampling Methods 165

7.2 Node-wise Sampling Methods

The node-wise aggregation process in Eq.(7.3) can be rewritten as:

F(l)
i = |Ñ(vi)|

∑
v j∈Ñ(vi)

1
|Ñ(vi)|

Âi, jF(l−1)
j Θ(l−1), (7.6)

which can be regarded as the following expectation form:

F(l)
i = |Ñ(vi)| · E[Fvi] (7.7)

where Fvi is a discrete random variable as defined below:

p
(
Fvi = Âi, jF(l−1)

j Θ(l−1)
)
=

 1
Ñ(vi)

, if v j ∈ Ñ(vi),

0, otherwise.

A natural idea to speed up the computation while reducing the memory
need for Eq. (7.7) is to approximate the expectation by Monte-Carlo sampling.
Specifically, the expectation E[Fvi] can be estimated as:

E[Fvi] ≈ F̂vi =
1

|nl(vi)|

∑
v j∈nl(vi)

Âi, jF(l−1)
j Θ(l−1), (7.8)

where nl(vi) ⊂ Ñ(vi) is a set of nodes sampled fromV for the l-th layer calcu-
lation for node vi according to the following probability distribution:

p
(
v j|vi

)
=

 1
Ñ(vi)

, if v j ∈ Ñ(vi),

0, otherwise.
(7.9)

The estimator in Eq. (7.8) is unbiased as shown below:

E[F̂vi] = E

 1
|nl(vi)|

∑
v j∈nl(vi)

Âi, jF(l−1)
j Θ(l−1)

1{v j ∈ nl(vi)}

= E

 1
|nl(vi)|

∑
v j∈V

Âi, jF(l−1)
j Θ(l−1)

1{v j ∈ nl(vi)}

=

1
|nl(vi)|

∑
v j∈V

Âi, jF(l−1)
j Θ(l−1)E

[
1{v j ∈ nl(vi)}

]
=

1
|nl(vi)|

∑
v j∈V

Âi, jF(l−1)
j Θ(l−1) |n

l(vi)|
˜|N(vi)|

=
1

˜|N(vi)|

∑
v j∈V

Âi, jF(l−1)
j Θ(l−1)

= E[Fvi].

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

166 Scalable Graph Neural Networks

where 1{v j ∈ nl(vi)} is an indicator random variable, which takes value 1 if
v j ∈ nl(vi) and 0 otherwise.

With Eq. (7.8), the node-wise aggregation process can be expressed as:

F(l)
i =

|Ñ(vi)|
|nl(vi)|

∑
v j∈nl(vi)

Âi, jF(l−1)
j Θ(l−1). (7.10)

The sampling process utilized in Eq. (7.10) is called node-wise sampling, as
the node set nl(vi) is sampled only for the node vi and not shared with other
nodes. Specifically, the GraphSAGE-Filter (see Section 5.3.2 for details on
GraphSAGE-Filter) can be viewed as a node-wise sampling method due to the
neighbor sampling process. Typically, for a specific graph filtering layer, the
sampling size |nl(vi)| is set to a fixed value |nl(vi)| = m for all nodes. While dif-
ferent graph filtering layers can have different sampling sizes, for convenience,
we assume that they all have the same sampling size m in this chapter.

Although the node-wise sampling methods can help control the size of the
number of involved nodes in each layer to a fixed size m, it still suffers from the
“neighborhood explosion” issue when m is large. In detail, following the same
top-down perspective in Figure 7.1, the number of nodes involved to calculate
the final representation F(L)

i for node vi is in the order of mL, which increases
exponentially as the number of layers L grows. The space and time complexity
are O(mL ·d2) and O(|Vl| ·mL ·d2), respectively. One way to alleviate this issue
is to control the sampling size m to be a small number. However, a small m
leads to a large variance in the estimation in Eq. (7.8), which is not desired.

A sampling method, which utilizes an extremely small sampling size m (as
small as 2) while maintaining a reasonable variance is proposed in (Chen et al.,
2018a). The idea is to keep a historical representation F̄(l−1)

i for each F(l−1)
i for

l = 2, . . . , L, and then utilize these historical representations during the calcu-
lation in Eq.(7.3). Each time when F(l)

i is calculated, we update its correspond-
ing historical representation F̄(l)

i with F(l)
i . The historical representations are

expected to be similar to the real representations if the model parameters do
not change too fast during the training process. We still use Monte-Carlo sam-
pling to estimate Eq. (7.3). However, for those nodes that are not sampled to
nl(vi), we include their historical representations in the calculation. Formally,
Eq. (7.3) can be decomposed into two terms as:

F(l)
i =

∑
v j∈Ñ(vi)

Âi, j∆F(l−1)
j Θ(l−1) +

∑
v j∈Ñ(vi)

Âi, jF̄(l−1)
j Θ(l−1) (7.11)

where

∆F(l−1)
j = F(l−1)

j − F̄(l−1)
j .

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

7.3 Layer-wise Sampling Methods 167

The term ∆F(l−1)
j denotes the difference between the real up-to-date representa-

tion and the historical representation. Instead of using Monte-Carlo sampling
to estimate the entire term in Eq. (7.3), only the difference is estimated as:∑

v j∈Ñ(vi)

Âi, j∆F(l−1)
j Θ(l−1) ≈

|Ñ(vi)|
|nl(vi)|

∑
v j∈nl(vi)

Âi, j∆F(l−1)
j Θ(l−1). (7.12)

With Eq. (7.12), the aggregation process in Eq. (7.11) can be estimated as:

F(l)
i ≈

|Ñ(vi)|
|nl(vi)|

∑
v j∈nl(vi)

Âi, j∆F(l−1)
j Θ(l−1) +

∑
v j∈Ñ(vi)

Âi, jF̄(l−1)
j Θ(l−1), (7.13)

which is named as the control-variate (CV) estimator and utilized to update
the node representations. Note that, the second term in the right hand side of
Eq. (7.13) is calculated from stored historical node representations, which does
not require the recursive calculation process and thus is computationally effi-
cient. The CV-estimator is unbiased as the estimation in Eq. (7.12) is unbiased.
The variance of Eq.(7.13) is smaller than that of Eq. (7.10) as ∆F(l−1)

i is much
smaller than F(l−1)

i . However, the reduced variance does not come for free.
While the time complexity of this process remains O(mL · d2) (m can be much
smaller in the CV estimator) as the aggregation process described in Eq. (7.10),
much more memory are required. In fact, to store the historical representations
for all nodes involved in the process, O(degL · d) memory is required. It is the
same as the SGD process without the node-wise sampling. Note that the space
complexity is not dependent on the sampling size m; hence, a smaller m cannot
ensure the lower space complexity.

7.3 Layer-wise Sampling Methods

In the node-wise sampling methods, to calculate the final representation F(L)
i

for node vi, the node set nL(vi) is sampled from Ñ(vi) and F(L−1)
j for v j ∈

nL(vi) is utilized during the calculation. Furthermore, to calculate F(L−1)
j for

each v j ∈ nL(vi), a node set n(L−1)(v j) needs to be sampled. Specifically, let N l

denote all the nodes sampled for the calculation of the l-th layer, then N l can
be recursively defined from top to down as:

N l−1 = ∪v j∈N l nl−1(v j), with NL = nL(vi). l = L, . . . , 2, 1. (7.14)

When the mini-batch SGD is adopted and the final representations of a batch
B of nodes need to be calculated, NL can be defined as NL = ∪vi∈BnL(vi).
This recursive process in Eq. (7.14) makes N l grows exponentially; thus, the

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

168 Scalable Graph Neural Networks

node-wise sampling methods still suffer from the “neighborhood explosion”
issue. One way to solve the issue is to utilize the same set of sampled nodes to
calculate all node representations in a specific layer. In other words, we allow
nl−1(v j) = nl−1(vk) for ∀v j, vk ∈ N l; thus the size of N(l−1) remains constant
as L increases. Then, we only need to sample once for each layer and this
strategy is called as layer-wise sampling. However, it is impractical to make
nl−1(v j) = nl−1(vk) as they are sampled according to different node-specific dis-
tributions as described in Eq. (7.9). In detail, the set nl−1(v j) is sampled from
the neighborhood of the node v j; while nl−1(vk) is sampled from the neighbor-
hood of the node vk.

Importance sampling is adopted by (Chen et al., 2018b; Huang et al., 2018)
to design the layer-wise sampling methods. For the l-th layer, instead of using
the node-specific distributions to sample the nodes, a shared distribution, which
is defined over the entire node set V, is utilized to sample a shared set of
nodes. Then all the output node representations for this layer are calculated
only based on these shared sampled nodes. Next, we introduce the details of
two representative layer-wise sampling methods (Chen et al., 2018b; Huang
et al., 2018). Since these two methods follow the similar design, we focus on
the method in (Huang et al., 2018) and then briefly describe the one in (Chen
et al., 2018b).

To be consistent with the original paper (Huang et al., 2018), we first re-
formulate the process from Eq. (7.6) to Eq.(7.9) as follows. The node-wise
aggregation process in Eq.(7.3) can be rewritten as:

F(l)
i = D(vi)

∑
v j∈Ñ(vi)

Âi, j

D(vi)
F(l−1)

j Θ(l−1), (7.15)

where D(vi) =
∑

v j∈Ñ(vi)
Âi, j. Eq. (7.15) can be regarded as the following expec-

tation form:

F(l)
i = D(vi) · E[Fvi] (7.16)

where Fvi is a discrete random variable as defined below:

p
(
Fvi = F(l−1)

j Θ(l−1)
)
=

 Âi, j

D(vi)
, if v j ∈ Ñ(vi),

0, otherwise.

Assume that ql(v j) is a known distribution defined on the entire node set V
and ql(v j) > 0,∀v j ∈ V. Instead of using Monte-Carlo sampling to estimate

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

7.3 Layer-wise Sampling Methods 169

… …

…

…Mini-batch ℬ

𝑁!

𝑁!"#

𝑁#
1-st layer

…
…

(L-1)-th layer

L-th layer

Figure 7.2 Layer-wise sampling

E[Fvi], we use importance sampling based on ql(v j) as:

E[Fvi] ≈ F̂vi =
1
|N l|

∑
v j∈N l

p(v j|vi)
ql(v j)

F(l−1)
j Θ(l−1), v j ∼ ql(v j) ∀v j ∈ N l, (7.17)

where N l denotes a set of nodes sampled according to the distribution ql(v j)

and p(v j|vi) =
Âi, j

D(vi)
if v j ∈ Ñ(vi), otherwise p(v j|vi) = 0. The superscript l in

ql(v j) indicates that the distribution is utilized in the l-th layer to sample the
node set N l and different layers may use different sampling distributions. The
set of nodes N l is shared by all nodes (e.g., vi) which need to calculate the rep-
resentations (e.g., F(l)

i) in the l-th layer. With the importance sampling estima-
tion for E[Fvi] in Eq. (7.17), the node-wise aggregation process (as described
in Eq. (7.16)) with the layer-wise sampling strategy can then be described as:

F(l)
i = D(vi) ·

1
|N l|

∑
v j∈N l

p(v j|vi)
q(v j)

F(l−1)
j Θ(l−1)

=
1
|N l|

∑
v j∈N l

Âi, j

ql(v j)
F(l−1)

j Θ(l−1) (7.18)

where nodes in N l are sampled from ql(v j). Note that the distribution ql(v j)
is not dependent on the center node vi and it is shared by all nodes. Before
describing how to design the sampling distribution ql(v j) appropriately, we
first introduce the process to sample nodes and build the computational graph
to calculate the final representations for all nodes in a sampled batch B. As
shown in Figure 7.2, from a top-down perspective, to calculate F(L)

i for all

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

170 Scalable Graph Neural Networks

nodes vi ∈ B, a set of nodes NL are sampled according to qL(v j). The repre-
sentations F(L−1)

j of all v j ∈ NL are used to calculate F(L)
i for all nodes vi ∈ B

according to Eq. (7.18). To calculate F(L−1)
j of v j ∈ NL, we need to sample NL−1

and aggregate information from them. This process goes to the bottom layer
where N1 is sampled and the input features F(0)

j for v j ∈ N1 are utilized for the

calculation. The memory required to compute the final representation F(L)
i for

each node vi ∈ B according to Eq. (7.18), assuming |N l| = m for all layers, is
O(L ·m · d). It is much smaller than that required by node-wise sampling based
methods. Correspondingly, the time efficiency for each epoch is improved as
fewer node representations are required to be computed during this process.

The importance sampling based estimator (IS-estimator) in Eq. (7.17) is
unbiased and we want to find a distribution q(v j) such that the variance of
Eq. (7.17) can be minimized. According to the derivations of importance sam-
pling in (Owen, 2013), we conclude that:

Proposition 7.1 (Huang et al., 2018) The variance of the estimator F̂vi in
Eq. (7.17) is given by:

Varq(F̂vi) =
1
|N l|

 (p(v j|vi) · |F(l−1)
j Θ(l−1)| − E[Fvi] · q(u j))2

(q(v j))2

 .
The optimal sampling distribution q(v j), which minimizes the above variance
is given by:

q(v j) =
p(v j|vi) · |F(l−1)

j Θ(l−1)|∑
vk∈V

p(vk |vi) · |F(l−1)
k Θ(l−1)|

. (7.19)

However, the optimal sampling distribution in Eq. (7.19) is not feasible as it
is dependent on all node representations in the (l− 1)-th layer F(l−1) but we are
trying to use the sampling distribution to decide which of them to be calculated.
Note that in (Chen et al., 2018b), the variance to be minimized is based on all
the nodes in the same layer instead of a single node vi as Proposition 7.1 and
the optimal distribution takes a slightly different form but it is still dependent
on F(l−1).

Hence, two different approaches are proposed in (Chen et al., 2018b) and (Huang
et al., 2018), respectively. In (Chen et al., 2018b), the dependence on F(l−1) is
directly discarded and a sampling distribution designed according to the opti-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

7.4 Subgraph-wise Sampling Methods 171

mal probability distribution is adopted as q(v j):

q(v j) =
∥Â:, j∥

2∑
vk∈V

∥Â:,k∥
2
. (7.20)

Note that the same q(v j) as described in Eq. (7.20) is used for all the lay-
ers. Hence, the superscript l is removed from ql(v j). In (Huang et al., 2018),
F(l−1)

j Θ(l−1) in Eq. (7.19) is replaced by F(0)
j Θin, where F(0)

j denotes the in-
put features of node v j and Θin is a linear projection to be learned. Further-
more, the sampling distribution in Eq. (7.19) is optimal for a specific node vi,
but not ready for layer-wise sampling. To make the distribution applicable to
layer-wise sampling, the following distribution, which summarizes computa-
tions over all nodes in N l+1, is proposed in (Huang et al., 2018):

ql(v j) =

∑
vi∈N l+1

p(v j|vi) · |F(0)
j Θin|∑

vk∈V

∑
vi∈N l+1

p(vk |vi) · |F(0)
k Θin|

. (7.21)

Note that N l+1 denotes the nodes involved in the (l + 1) − th layer, which is on
the top of the l-th layer. Hence, the distribution ql(v j) defined in Eq. (7.21) is
dependent on the nodes in its top-layer. Furthermore the distribution is chang-
ing in an adaptive way during the training since the parameters Θin are kept
updated. With these modifications to the optimal distribution in Eq. (7.19),
the distribution in Eq. (7.21) is not guaranteed to lead to minimal variance.
Therefore, the variance terms are directly included into the loss function to be
explicitly minimized during the training process (Huang et al., 2018).

7.4 Subgraph-wise Sampling Methods

The layer-wise sampling based methods largely reduce the number of nodes in-
volved in calculating final node representations and resolve the neighborhood
explosion issue. However, the nature of layer-wise sampling methods is likely
to cause another issue in the aggregation process from layer to layer. Specifi-
cally, it can be observed from Eq. (7.18) that the aggregation process to gen-
erate F(l)

i is dependent on the term Âi, j in each sampled node to be aggregated.
This observation indicates that not all nodes in N l are used to generate F(l)

i , but
only those that have connections to node vi are utilized. Then, if the connec-
tions between node vi and the sampled nodes in N l are too sparse, the represen-
tation F(l)

i of node vi may not be learned well. In an extreme case where there
are no nodes in N l connected to the node vi, the representation of node vi in

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

172 Scalable Graph Neural Networks

this layer is rendered to 0 according to Eq. (7.18). Hence, to improve the stabil-
ity of the training process, we need to sample N l with a reasonable number of
connections to node vi. In other words, we need to ensure that the connectivity
between the sampled nodes in N l and N l−1 is dense so that all nodes are likely
to have some nodes to aggregate information from. Note that the layer-wise
sampling methods described in Section 7.3 do not consider this when design-
ing the layer-wise sampling distribution. To improve the connections between
sampled nodes in consecutive layers, the sampling distributions for consecu-
tive layers must be designed in a dependent way, which introduces significant
difficulty. One way to ease the design is to use the same set of sampled nodes
for all the layers, i.e., N l = N l−1 for l = L . . . , 2. Only one sample distribution
needs to be designed so that more connections between the sampled nodes are
encouraged. Furthermore, suppose the same set of nodes, denoted as Vs, is
adopted for all layers, then, the layer-wise aggregation in Eq. (7.18) is running
the full neighborhood aggregations on the graph Gs = {Vs,Es} that is induced
on the sampled node setsVs. The induced graph Gs is a subgraph of the origi-
nal graphG asVs ⊂ V and Es ⊂ E. Instead of samplingVs, for each batch, we
can directly sample a subgraph Gs from G and perform model training on the
subgraph. The strategy to sample subgraphs for node representation and model
training is called subgraph-wise sampling. There exist various subgraph-wise
sampling based methods (Chiang et al., 2019; Zeng et al., 2019) with different
focuses on the sampled graph Gs.

In (Chiang et al., 2019), graph clustering methods such as METIS (Karypis
and Kumar, 1998) and Graclus (Dhillon et al., 2007) are adopted to partition
the graph G into a set of subgraphs (clusters) {Gs} such that the number of links
within each cluster is much more than that between clusters. To perform SGD,
a subgraph is sampled from {Gs} each time and the gradient is estimated based
on the following loss function:

LGs =
∑

vi∈Vl∩Vs

ℓ(fGNN(As,Fs;Θ)i, yi), (7.22)

where As, Fs denote the adjacency matrix and features for the sampled sub-
graph Gs, respectively. The set Vl ∩ Vs consists of labeled nodes that are in
Vs. The memory required to perform one step of SGD based on the sampled
subgraph Gs is O(|Es| + L · |Vs| · d + L · d2).

In (Zeng et al., 2019), various node samplers are designed to sample a set
of nodes Vs where the subgraph Gs is induced from. Specifically, an edge-
based node sampler is designed to pair-wisely sample nodes that have high
influence on each other and random-walk based sampler is designed to improve

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

7.5 Conclusion 173

the connectivity between the sampled nodes. We briefly describe these two
samplers.

• Edge-based Sampler: Given a budget m, m edges are randomly sampled
according to the following distribution:

p((u, v)) =

(
1

d(u)+d(v)

)
∑

(u′,v′)∈E

(
1

d(u′)+d(v′)

) , (7.23)

where d(v) denotes the degree of node v. The end nodes of the m sampled
edges consist of the sampled nodesVs, which is used to induce the subgraph
Gs.

• RW-based Sampler: A set of r root nodes is uniformly sampled (with re-
placement) from the V. Then starting from each sampled node, a random
walk is generated. The nodes in the random walk consist of the final sampled
node setVs, which is used to induce the subgraph Gs.

Some normalization tricks are introduced in the aggregation process to make
it less biased as:

F(l)
i =

∑
v j∈Vs

Âi, j

αi, j
F(l−1)

j Θ(l−1), (7.24)

where αi, j can be estimated from the sampled subgraphs. In detail, a set of M
subgraphs is sampled from the samplers and Ci and Ci, j count the frequency of
the node vi and edge (vi, v j) appearing in the sampled M graphs, respectively.
Then, αi, j is estimated by Ci, j/Ci. Furthermore, the loss function for a mini-
batch based on the sampled subgraph Gs is also normalized as:

LGs =
∑

vi∈Vl∩Vs

1
λi
ℓ(fGNN(As,Fs;Θ)i, yi), (7.25)

where λi can be estimated as Ci/M. This normalization also makes the loss
function less biased.

7.5 Conclusion

In this chapter, we discuss various sampling-based methods to improve the
scalability of graph neural network models. We first introduce the “neighbor-
hood explosion” issue, which makes stochastic gradient descent (SGD) meth-
ods impractical in training graph neural network models. Then, we present

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

174 Scalable Graph Neural Networks

three types of sampling methods, including node-wise, layer-wise, and subgraph-
wise sampling. They aim to reduce the number of involved nodes during the
forward pass of mini-batch SGD and improve scalability. For each group, we
discuss their advantages and disadvantages and introduce representative algo-
rithms.

7.6 Further Reading

In this chapter, we mainly discuss sampling-based methods to improve the
scalability of the graph neural networks. Some of the introduced sampling
techniques have been successfully applied to real-world applications. For ex-
ample, the node-wise sampling based method GraphSage is adapted and ap-
plied to large scale graph based recommendation (Ying et al., 2018a); and the
layer-wise sampling based method FastGCN (Chen et al., 2018b) is adopted
to anti-money laundering in large scale bitcoin transaction network (Weber
et al., 2019). Other efforts have been made to develop distributed frameworks
for GNNs (Ma et al., 2018a; Wang et al., 2019e; Zhu et al., 2019c; Ma et al.,
2019a). These distributed architectures for graph neural networks can handle
large graphs with distributed data storage and parallel computation.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

8
Graph Neural Networks on Complex Graphs

8.1 Introduction

In the earlier chapters, we have discussed graph neural network models fo-
cusing on simple graphs where the graphs are static and have only one type
of nodes and one type of edges. However, graphs in many real-world applica-
tions are much more complicated. They typically have multiple types of nodes,
edges, unique structures, and often are dynamic. As a consequence, these com-
plex graphs present more intricate patterns that are beyond the capacity of the
aforementioned graph neural network models on simple graphs. Thus, dedi-
cated efforts are desired to design graph neural network models for complex
graphs. These efforts can significantly impact the successful adoption and use
of GNNs in a broader range of applications. In this chapter, using complex
graphs introduced in Section 2.6 as examples, we discuss the methods to ex-
tend the graph neural network models to capture more sophisticated patterns.
More specifically, we describe more advanced graph filters designed for com-
plex graphs to capture their specific properties.

8.2 Heterogeneous Graph Neural Networks

Heterogeneous graphs, which consist of multiple types of nodes and edges
as defined in Definition 2.35, are widely observed in real-world applications.
For example, the relations between papers, authors, and venues can be de-
scribed by a heterogeneous graph, as discussed in Section 2.6.1. Graph neu-
ral network models have been adapted to heterogeneous graphs (Zhang et al.,
2018b; Wang et al., 2019i; Chen et al., 2019b). Meta-paths (see the defini-
tion of meta-path schema and meta-paths in Definition 4.5), which capture
various relations between nodes with different semantics, are adopted to deal

175

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

176 Graph Neural Networks on Complex Graphs

with the heterogeneity in the heterogeneous graphs. In (Zhang et al., 2018b;
Chen et al., 2019b), meta-paths are utilized to split a heterogeneous graph into
several homogeneous graphs. Especially, meta-paths are treated as edges be-
tween nodes, and those meta-paths following the same meta-path schema are
considered as the same type of edges. Each meta-path schema defines a sim-
ple homogeneous graph with meta-path instances following this schema as the
edges. Graph filtering operations in Chapter 5 are applied to these simple ho-
mogeneous graphs to generate node representations capturing different local
semantic information, which are then combined to generate the final node rep-
resentations. Similarly, meta-paths are used to define meta-path based neigh-
bors, which are treated differently during the graph filtering process in (Wang
et al., 2019i). Specifically, given a meta-path schema ψ, a node v j is defined as
a ψ-neighbor for the node vi, if the node v j can be reached by node vi through a
meta-path following the schema ψ. The information aggregated from different
types of meta-path based neighbors is combined through the attention mecha-
nism to generate the updated node representations (Wang et al., 2019i). Next,
we first formally define the meta-path based neighbors and then describe the
graph filters designed for heterogeneous graphs.

Definition 8.1 (Meta-path based neighbors) Given a node vi and a meta-path
schema ψ in a heterogeneous graph, the ψ-neighbors of node vi, denoted as
Nψ(vi), consist of nodes that connect with node vi through a meta-path follow-
ing schema ψ.

The graph filters for heterogeneous graphs are designed in two steps: 1) ag-
gregating information from ψ-neighbors for each ψ ∈ Ψ, where Ψ denotes the
set of meta-path schemas adopted in the task; and 2) combining the information
aggregated from each type of neighbors to generate the node representations.
Specifically, for a node vi, the graph filtering operation (for the l-th layer) up-
dates its representation as:

z(l)
ψ,i =

∑
v j∈Nψ(vi)

α(l−1)
ψ,i j F(l−1)

j Θ
(l−1)
ψ

F(l)
i =

∑
ψ∈Ψ

β(l)
ψ z(l)

ψ,i,

where z(l)
ψ,i is the information aggregated from ψ-neighbors of node vi, Θl−1

ψ

is parameters specific to meta-path ψ based neighbors, and α(l−1)
ψ,i j and β(l)

ψ are
attention scores which can be learned as similar to the GAT-Filter introduced
in Section 5.3.2. Specifically, α(l−1)

ψ,i j is used to updates node representations of
vi and it indicates the contribution to vi from its ψ-neighbor v j ∈ Nψ(vi) in the

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

8.3 Bipartite Graph Neural Networks 177

l-th layer. It is formally defined as:

α(l−1)
ψ,i j =

exp
(
σ

(
aT
ψ ·

[
F(l−1)

i Θ
(l−1)
ψ ,F(l−1)

j Θ
(l−1)
ψ

]))
∑

vk∈Nψ(vi) exp
(
σ

(
aT
ψ ·

[
F(l−1)

i Θ
(l−1)
ψ ,F(l−1)

k Θ
(l−1)
ψ

])) ,
where aψ is a vector of parameters to be learned. Meanwhile, the attention
score β(l)

ψ to combine information from different meta-path based neighbors is
not specific for each node vi but shared by all nodes inV in their representation
updates. β(l)

ψ indicates the contribution from the ψ-neighbors of vi. It is formally
defined as:

β(l)
ψ =

exp
(

1
|V|

∑
i∈V q⊤ · tanh

(
z(l)
ψ,iΘ

(l)
β + b

))
∑
ψ∈Ψ

exp
(

1
|V|

∑
i∈V q⊤ · tanh

(
z(l)
ψ,iΘ

(l)
β + b

)) ,
where q, Θl

β and b are the parameters to be learned.

8.3 Bipartite Graph Neural Networks

Bipartite graphs are widely observed in real-world applications such as recom-
mendations, where users and items are the two disjoint sets of nodes, and their
interactions are the edges. In this section, we briefly introduce one general
graph filter designed for bipartite graphs since we will present the advanced
ones in Section 12.2.2, where we discuss the applications of graph neural net-
works in recommendations.

As introduced in Definition 2.36, there are two disjoint sets of nodes U
and V, which can be of different types. There are only edges across the two
sets while no edges exist within each set. To design the spatial based graph
filters, the key idea is to aggregate information from neighboring nodes. In
bipartite graphs, for any node ui ∈ U, its neighbors is a subset of V, i.e.,
N(ui) ⊂ V. Similarly, for a node v j ∈ V, its neighbors are from U. Hence,
two graph filtering operations are needed for these two sets of nodes, which
can be described as:

F(l)
ui
=

1
|N(ui)|

∑
v j∈N(ui)

F(l−1)
v j
Θ(l−1)

v ,

F(l)
vi
=

1
|N(vi)|

∑
u j∈N(vi)

F(l−1)
u j
Θ(l−1)

u ,

where we use F(l)
ui to denote the node representation of ui after the l-th layer,

Θ
(l−1)
v and Θ(l−1)

u are parameters to transform embedding from the node space
V toU andU toV, respectively.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

178 Graph Neural Networks on Complex Graphs

8.4 Multi-dimensional Graph Neural Networks

In many real-world graphs, multiple types of relations can simultaneously ex-
ist between a pair of nodes. These graphs with multiple types of relations can
be modeled as multi-dimensional graphs, as introduced in Section 2.6.3. In
multi-dimensional graphs, the same set of nodes is shared by all the dimen-
sions, while each dimension has its structure. Hence, when designing graph
filters for multi-dimensional graphs, it is necessary to consider both within-
and across- dimension interactions. Specifically, the within-dimension interac-
tions are through the connections between the nodes in the same dimension,
while the across-dimension interactions are between the “copies” of the same
node in different dimensions. In (Ma et al., 2019c), a graph filter, which cap-
tures both within- and across- information, is proposed. In detail, during the
graph filtering process, for each node vi, a set of representations of node vi in
all dimensions is first learned and then combined to generate an overall repre-
sentation for node vi. To update the representation of node vi in the dimension
d, we need to aggregate information from its neighbors in the same dimension
and also the information about vi in the other dimensions. Hence, we define two
types of neighbors in multi-dimensional graphs: the within-dimension neigh-
bors and the across-dimension neighbors. For a given node vi in the dimension
d, the within-dimension neighbors are those nodes that directly connect to the
node vi in the dimension d. In contrast, the across-dimension neighbors consist
of the “copies” of the node vi in other dimensions. The set of within-dimension
neighbors of node vi in dimension d is denoted as Nd(vi). For example, in the
multi-dimensional graph shown in Figure 8.1, for node 4, its within-dimension
neighbors in the “red” dimension include the nodes 1, 2 and 5. Furthermore,
the same node 4 is shared by all dimensions, which can be viewed as “copies”
of the same node in different dimensions. These copies of node 4 implicitly
connect to each other, and we call them as the across-dimension neighbors for
node 4. As shown in Figure 8.1, the across-dimension neighbors for node 4 in
the “red” dimension are the copies of node 4 in the “blue” and “green” dimen-
sions. With these two types of neighbors, we can now describe the graph filter-
ing operation (for node vi in the l-th layer) designed for the multi-dimensional

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

8.4 Multi-dimensional Graph Neural Networks 179

1 2
3

4

5 6

1 2
3

4

65

1 2
3

4

5 6

1

4

2

5

44 4

within-dimension neighbors

across-dimension neighbors

Figure 8.1 An illustrative example of two types of neighbors in the multi-
dimensional graph

graph in (Ma et al., 2019c) as:

F(l−1)
d, j = σ

(
F(l−1)

j Θ
(l−1)
d

)
for v j ∈ Nd(vi) (8.1)

F(l−1)
g,i = σ

(
F(l−1)

i Θ(l−1)
g

)
for g = 1, . . .D (8.2)

F(l)
w,d,i =

∑
v j∈Nd(vi)

F(l−1)
d, j (8.3)

F(l)
a,d,i =

D∑
g=1

β(l−1)
g,d F(l−1)

g,i (8.4)

F(l)
i = ηF(l)

w,d,i + (1 − η)F(l)
a,d,i. (8.5)

We next explain the steps of graph filters as described from Eq. (8.1) to Eq. (8.5).
In Eq. (8.1), the representations of within-dimension neighbors of node vi from
the previous layer (the (l−1)-th layer) are mapped to dimension d byΘ(l−1)

d and
σ() is a non-linear activation function. Similarly, the representation of node vi

from the previous layer is projected to different dimensions where D is the to-
tal number of dimensions in the multi-dimension graph. The within-dimension
aggregation is performed in Eq. (8.3), which generates the within-dimension
representation for node vi in the l-th layer. The across-dimension information
aggregation is performed in Eq. (8.4), where β(l−1)

g,d is the attention score mod-

180 Graph Neural Networks on Complex Graphs

eling the impact of dimension g on dimension d, which is calculated as:

β(l−1)
g,d =

tr(Θ(l−1)
g

⊤
W(l−1)Θ

(l−1)
d)

D∑
g=1

tr(Θ(l−1)
g

⊤
W(l−1)Θ

(l−1)
d)

,

where W(l−1) is a parameter matrix to be learned. Finally, the within-dimension
representation and the across-dimension representation of node vi are com-
bined in Eq. (8.5) to generate the updated vi’s representation F(l)

i after the l-th
layer, where η is a hyperparameter balancing these two parts.

8.5 Signed Graph Neural Networks

In many real-world systems, relations can be both positive and negative. For
instance, social media users not only have positive edges such as friends (e.g.,
Facebook and Slashdot), followers (e.g., Twitter), and trust (e.g., Epinions),
but also can create negative edges such as foes (e.g., Slashdot), distrust (e.g.,
Epinions), blocked and unfriended users (e.g., Facebook and Twitter). These
relations can be represented as graphs with both positive and negative edges.
Signed graphs have become increasingly ubiquitous with the growing popular-
ity of online social networks. A formal definition of signed graphs can be found
in Section 2.6.4. The graph filters designed for simple graphs in Chapter 5 can-
not be directly applied to signed graphs because of the existence of the nega-
tive edges. The negative edges carry very different or even opposite relations
compared with the positive edges. Hence, to design graph filters for signed
graphs, dedicated efforts are desired to properly handle the negative edges. A
naive approach to address the negative edges is to split a signed graph into two
separate unsigned graphs, each of which consists of only positive or negative
edges. Then the graph filters in Section 5.3 can be separately applied to these
two graphs, and the final node representations can be obtained by combining
the representations from these two graphs. However, this approach ignores the
complex interactions between the positive and negative edges suggested by so-
cial balance theories (Heider, 1946; Cartwright and Harary, 1956; Leskovec
et al., 2010b), which can provide fruitful results if extracted properly (Kunegis
et al., 2009; Leskovec et al., 2010a; Tang et al., 2016b). In (Derr et al., 2018),
the balance theory is facilitated to model the relations between the positive and
negative edges, based on which a specific graph filter is designed for signed
graphs. Specifically, balanced and unbalanced paths are proposed based on the
balance theory, which are then adopted to guide the aggregation process when
designing the graph filters for signed graphs. Two representations for each node

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

8.5 Signed Graph Neural Networks 181

𝑣! …+
+ +

++
-

-
-

-
-

Suggested ``friends’’ of 𝑣! according to balance theory

Suggested ``foes’’ of 𝑣! according to balance theory

𝐵 ! (𝑣") 𝐵 # (𝑣") 𝐵 $ (𝑣") 𝐵 % (𝑣")

𝑈 ! (𝑣") 𝑈 # (𝑣") 𝑈 $ (𝑣") 𝑈 % (𝑣")

Figure 8.2 Balanced and unbalanced neighbors

are maintained, i.e., one catching the information aggregating from balanced
paths and the other capturing information aggregating from unbalanced paths.
Next, we first introduce the balanced and unbalanced paths, and then the graph
filters designed for signed graphs. In general, balance theory (Heider, 1946;
Cartwright and Harary, 1956) suggests that “the friend of my friend is my
friend” and “the enemy of my friend is my enemy”. Therefore, the cycles in
the graphs are classified as balanced or unbalanced. Specifically, a cycle with
an even number of negative edges is considered as balanced, otherwise unbal-
anced. It is evident from numerous empirical studies that the majority of circles
in real-world signed graphs are balanced (Tang et al., 2016b). Inspired by the
definition of balanced cycles, we define a path consisting of an even number of
negative edges as a balanced path. In contrast, an unbalanced path consists of
an odd number of negative edges. Given the definition of the balanced path, we
can see that a balanced path between node vi and node v j indicates a positive
relation between them since a balanced cycle is expected according to balance
theory and empirical studies. Similarly, an unbalanced path between nodes vi

and v j indicates a negative relation between them. Given the definition of the
balanced and unbalanced paths, we then define the balanced and unbalanced
multi-hop neighbors. Nodes that can be reached by a balanced path of length
l−1 from the node vi are defined as the (l−1)-hop balanced neighbors of the
node vi, denoted as B(l−1)(vi). Similarly the set of unbalanced (l−1)-hop neigh-
bors can be defined and denoted as U l−1(vi). Given the (l − 1)-hop balanced
and unbalanced neighbors, we can conveniently introduce the l− hop balanced
and unbalanced neighbors. As shown in Figure 8.2, adding a positive edge to
a balanced path of length l−1 or adding a negative edge to an unbalanced path
of length l−1 lead to balanced paths of length l. Unbalanced paths of length l

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

182 Graph Neural Networks on Complex Graphs

can be similarly defined. Formally, we can define the balanced neighbors and
unbalanced neighbors of different hops (for l > 2) recursively as follows:

Bl(vi) = {v j|vk ∈ B(l−1)(vi) and v j ∈ N
+(vk)}

∪ {v j|vk ∈ U(l−1)(vi) and v j ∈ N
−(vk)},

U l(vi) = {v j|vk ∈ U(l−1)(vi) and v j ∈ N
+(vk)}

∪ {v j|vk ∈ B(l−1)(vi) and v j ∈ N
−(vk)},

where N+(vi) and N−(vi) denote 1-hop positive and 1-hop negative neighbors
of node vi and we have B1(vi) = N+(vi), U1(vi) = N−(vi), respectively.

When designing the graph filters for signed graphs, the information from the
balanced neighbors and the unbalanced neighbors should be separately main-
tained, as they could carry very different information. In particular, the bal-
anced neighbors can be regarded as potential “friends”, while the unbalanced
neighbors can be viewed as potential “foes”. Hence, two types of representa-
tions are maintained to keep information aggregated from balanced and unbal-
anced neighbors, respectively. For a node vi, F(B,l)

i and F(U,l)
i are used to denote

its balanced representation and its unbalanced representation after l graph fil-
tering layers, respectively. Specifically, the process of the graph filters in the
l-th layer can be described as follows:

F(B,l)
i = σ

 ∑

v j∈N
+(vi)

F(B,l−1)
j

|N+(vi)|
,

∑
vk∈N

−(vi)

F(U,l−1)
k

|N−(vi)|
,F(B,l−1)

i

Θ(B,l)

, (8.6)

F(U,l)
i = σ

 ∑

v j∈N
+(vi)

F(U,l−1)
j

|N+(vi)|
,

∑
vk∈N

−(vi)

F(B,l−1)
k

|N−(vi)|
,F(U,l−1)

i

Θ(U,l)

, (8.7)

where Θ(B,l) and Θ(U,l) are parameters to learning. In Eq. (8.6), F(B,l)
i is the

concatenation of three types of information – (1) the aggregation of balanced
representations (in the (l − 1)-th layer) from the positive neighbors of node vi,

i.e.,
∑

v j∈N
+(vi)

F(B,l−1)
j

|N+(vi)|
; (2) the aggregation of unbalanced representations (in the

(l−1)-th later) from the negative neighbors of node vi, i.e.,
∑

vk∈N
−(vi)

F(U,l−1)
k
|N−(vi)|

;

and (3) the balanced representation of vi in the (l−1) layer. Similarly, F(U,l)
i

is generated by aggregating information from unbalanced paths in Eq. (8.7).
After L graph filtering layers, the balanced and unbalanced representations for
node vi are combined to form the final representation for vi as follows:

zi = [F(B,L)
i ,F(U,L)

i],

where zi denotes the generated final representation for node vi. In (Li et al.,
2020b), attention mechanism is adopted to differentiate the importance of nodes

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

8.6 Hypergraph Neural Networks 183

when performing the aggregation in Eq. (8.6) and Eq. (8.7). In detail, GAT-
Filter is used to perform aggregation from the balanced/unbalanced neighbors
in Eq. (8.6) and Eq. (8.7).

8.6 Hypergraph Neural Networks

In many real-world problems, relations among entities go beyond pairwise as-
sociations. For example, in a graph describing the relations between papers, a
specific author can connect with more than two papers authored by him/her.
Here the “author” can be viewed as a “hyperedge” connecting with multiple
“papers” (nodes). Compared with edges in simple graphs, hyperedges can en-
code higher-order relations. The graphs with the hyperedges are named as hy-
pergraphs. A formal definition of hypergraphs can be found in Section 2.6.5.
The key to build graph filters for hypergraphs is to facilitate the high-order re-
lations encoded by hyperedges. Specifically, pairwise relations are extracted
from these hyperedges, which render the hypergraphs into a simple graph
and graph filters designed for simple graphs as introduced in Section 5.3 can
thus be applied (Feng et al., 2019b; Yadati et al., 2019). Next, we introduce
some representative ways to extract the pairwise relations from the hyperedges.
In (Feng et al., 2019b), pairwise relations between node pairs are estimated
through the hyperedges. Two nodes are considered to be connected if they ap-
pear together in at least one hyperedge. If they appear in several hyperedges,
the impact of these hyperedges is combined. An “adjacency matrix” describing
the pairwise node relations can be formulated as:

Ãhy = D−1/2
v HWD−1

e H⊤D−1/2
v .

where the matrices Dv,H,W,De are defined in Definition 2.39. In detail, H is
the incidence matrix describing relations between nodes and hyperedges, W
is a diagonal matrix describing the weights on the hyperedges, Dv and De are
the node and hyperedge degree matrices, respectively. Graph filters can then be
applied to the simple graph defined by the matrix Ãhy. In (Feng et al., 2019b),
the GCN-Filter is adopted that can be described as:

F(l) = σ(ÃhyF(l−1)Θ(l−1)),

where σ is a non-linear activation function.
In (Yadati et al., 2019), the method proposed in (Chan et al., 2018) is adopted

to convert the hyperedges to pairwise relations. For each hyperedge e, which
consists of a set of nodes, two nodes are chosen to be used to generate a simple

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

184 Graph Neural Networks on Complex Graphs

edge as:

(vi, v j) := arg max
vi,v j∈e

∥h(vi) − h(v j)∥22,

where h(vi) can be regarded as some attributes (or some features) that are as-
sociated with node vi. Specifically, in the setting of graph neural networks, for
the l-th layer, the hidden representations learned from the previous layer F(l−1)

are the features to measure the relations. A weighted graph can then be con-
structed by adding all these extracted pairwise relations to the graph, and the
weights for these edges are determined by their corresponding hyperedges. We
then use A(l−1) to denote the adjacency matrix describing these relations. The
graph filter for the l-th layer can then be expressed as:

F(l) = σ(Ã(l−1)F(l−1)Θ(l−1)), (8.8)

where Ã(l−1) is a normalized version of Al−1 with the way introduced in the
GCN-Filter in Section 5.3.2. Note that the adjacency matrix A(l−1) for the graph
filter is not fixed but adapted according to the hidden representations from the
previous layer.

One major shortcoming for this definition is that only two nodes of each
hyperedge are connected. It is likely to cause information loss for other nodes
in the hyperedge. Furthermore, this might also lead to a very sparse graph.
Hence, one approach to improve the adjacency matrix is proposed in (Chan and
Liang, 2019). The chosen nodes are also connected to the remaining nodes in
the corresponding hyperedge. Hence, each hyperedge results in 2|e| − 3 edges,
where |e| denotes the number of nodes in the hyperedge e. The weight of each
extracted edge is assigned as 1/(2|e| − 3). The adjacency matrix A(l−1) is then
built upon these edges, which can be utilized in the graph filtering process in
Eq. (8.8).

8.7 Dynamic Graph Neural Networks

Dynamic graphs are constantly evolving; thus the existing graph neural net-
work models are inapplicable as they are not able to capture the temporal in-
formation. In (Pareja et al., 2019), a graph neural network model, which has
evolving weights across graph snapshots over time, named EvolveGCN, is pro-
posed to deal with the discrete dynamic graphs (see the definition of discrete
dynamic graphs in Section 2.6.6). For a discrete dynamic graph consisting of
T snapshots, T graph neural network models with the same structure (i.e., a
stack of several GNN-Filters) are learned. The model parameters for the first

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

8.7 Dynamic Graph Neural Networks 185

GNN Weights GNN Weights GNN Weights

Node Representations Node Representations Node Representations

RNN RNN

Time 1 Time 2 Time 3

Figure 8.3 An illustration for EvolveGCN

graph neural network model are randomly initialized and learned during train-
ing, while the model parameters for the t-th GNN model is evolved from the
model parameters for the (t−1)-th model. As shown in Figure 8.3, the RNN
architecture is adopted to update the model parameters. Both the LSTM and
GRU variants of RNN as introduced in Section 3.4.2 can be used to update
the model parameters. We take GRU as an example to illustrate the l-th graph
filtering layer for the t-th graph snapshot as:

Θ(l−1,t) = GRU(F(l−1,t),Θ(l−1,t−1)), (8.9)

F(l,t) = GNN-Filter(A(t),F(l−1,t),Θ(l−1,t)), (8.10)

where Θ(l−1,t) and F(l,t) denote the parameters and the output for the l-th graph
filtering layer of the t-th GNN model, respectively. The matrix A(t) is the adja-
cency matrix of the t-th graph snapshot. Note that the parametersΘ(l−1,t) of the
l-th layer for the t-th GNN model in Eq. (8.10) are evolved fromΘ(l−1,t−1) with
GRU as shown in Eq. (8.9). The detailed architecture of GRU can be found
in Section 3.4.3. General GNN-Filters can be adopted in Eq. (8.10), while the
GCN-Filter is adopted by (Pareja et al., 2019).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

186 Graph Neural Networks on Complex Graphs

8.8 Conclusion

This chapter discusses how the graph neural network models can be extended
to complex graphs, including heterogeneous graphs, bipartite graphs, multi-
dimensional graphs, signed graphs, hypergraphs, and dynamic graphs. For each
type of complex graphs, we introduce representative graph filters that have
been specifically designed to capture their properties and patterns.

8.9 Further Reading

While we have introduced representative graph neural networks for these com-
plicated graphs, more works are constantly emerging. In (Zhang et al., 2019a),
random walk is utilized to sample heterogeneous neighbors for designing graph
neural networks for heterogeneous graphs. In (Sankar et al., 2018), a self-
attention mechanism is utilized for discrete dynamic graphs. The attention
mechanism is introduced for modeling hypergraph neural networks in (Bai
et al., 2019). Graph neural networks have been designed for dynamic graphs
in (Jiang et al., 2019; Ma et al., 2020b).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

9
Beyond GNNs: More Deep Models on Graphs

9.1 Introduction

There are many traditional deep models, such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), deep autoencoders, and generative
adversarial networks (GANs). These models have been designed for different
types of data. For example, CNNs can process regular grid-like data such as
images, while RNNs can deal with sequential data such as text. They have also
been designed in different settings. For instance, a large number of labeled data
is needed to train good CNNs and RNNs (or the supervised setting), while au-
toencoders and GANs can extract complex patterns with only unlabeled data
(or the unsupervised setting). These different architectures enable deep learn-
ing techniques to apply to many fields such as computer vision, natural lan-
guage processing, data mining, and information retrieval. We have introduced
various graph neural networks (GNNs) for simple and complex graphs in the
previous chapters. However, these models have been developed only for cer-
tain graph tasks such as node classification and graph classification; and they
often require labeled data for training. Thus, efforts have been made to adopt
more deep architectures to graph-structured data. Autoencoders have been ex-
tended to graph-structured data for node representation learning (Wang et al.,
2016; Kipf and Welling, 2016b; Pan et al., 2018). Deep generative models,
such as variational autoencoder and generative adversarial networks, have also
been adapted to graph-structured data for node representation learning (Kipf
and Welling, 2016b; Pan et al., 2018; Wang et al., 2018a) and graph genera-
tion (Simonovsky and Komodakis, 2018; De Cao and Kipf, 2018). These deep
graph models have facilitated a broader range of graph tasks under different
settings beyond the capacity of GNNs; and have greatly advanced deep learn-
ing techniques on graphs. This chapter aims to cover more deep models on

187

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

188 Beyond GNNs: More Deep Models on Graphs

graphs, including deep autoencoders, variational autoencoders, recurrent neu-
ral networks, and generative adversarial networks.

9.2 Autoencoders on Graphs

Autoencoders, which have been introduced in Section 3.5, can be regarded
as unsupervised learning models to obtain compressed low-dimensional rep-
resentations for input data samples. Autoencoders have been adopted to learn
low-dimensional node representations (Wang et al., 2016; Kipf and Welling,
2016b; Pan et al., 2018). In (Wang et al., 2016), the neighborhood informa-
tion of each node is utilized as the input to be reconstructed; hence the learned
low-dimensional representation can preserve the structural information of the
nodes. Both the encoder and decoder are modeled with feedforward neural
networks as introduced in Section 3.5. In (Kipf and Welling, 2016b; Pan et al.,
2018), the graph neural network model, which utilizes both the input node
features and graph structure, is adopted as the encoder to encode node into
low-dimensional representations. These encoded node representations are then
employed to reconstruct the graph structural information. Next, we briefly in-
troduce these two types of graph autoencoders for learning low-dimensional
node representations.

In (Wang et al., 2016), for each node vi ∈ V, its corresponding row in the
adjacency matrix of the graph ai = Ai is served as the input of the encoder to
obtain its low-dimensional representation as:

zi = fenc(ai;Θenc),

where fenc is the encoder, which is modeled with a feedworward neural net-
work parameterized by Θenc. Then zi is utilized as the input to the decoder,
which aims to reconstruct ai as:

ãi = fdec(zi;Θdec),

where fdec is the decoder and Θdec denotes its parameters. The reconstruction
loss can thus be built by constraining ãi to be similar to ai for all nodes in V
as:

Lenc =
∑
vi∈V

∥ai − ãi∥
2
2.

Minimizing the above reconstruction loss can “compress” the neighborhood
information into the low-dimensional representation zi. The pairwise similar-
ity between the neighborhood of nodes (i.e. the similarity between the input)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

9.2 Autoencoders on Graphs 189

is not explicitly be captured. However, as the autoencoder (the parameters) is
shared by all the nodes, the encoder is expected to map those nodes who have
similar inputs to similar node representations, which implicitly preserves the
similarity. The above reconstruction loss might be problematic due to the in-
herent sparsity of the adjacency matrix A. A large portion of the elements in
ai is 0, which might lead the optimization process to easily overfit to recon-
structing the 0 elements. To solve this issue, more penalty is imposed to the
reconstruction error of the non-zero elements by modifying the reconstruction
loss as:

Lenc =
∑
vi∈V

∥ (ai − ãi) ⊙ bi∥
2
2,

where ⊙ denotes the Hadamard product, bi = {bi, j}
|V|

j=1 with bi, j = 1 when
Ai, j = 0 and bi, j = β > 1 when Ai, j , 0. β is a hyperparameter to be tuned. Fur-
thermore, to directly enforce connected nodes to have similar low-dimensional
representations, a regularization loss is introduced as:

Lcon =
∑

vi,v j∈V

Ai, j · ∥zi − z j∥
2
2.

Finally, regularization loss on the parameters of encoder and decoder is also
included in the objective, which leads to the following loss to be minimized:

L = Lenc + λ · Lcon + η · Lreg,

where Lreg denotes the regularization on the parameters, which can be ex-
pressed as:

Lreg = ∥Θenc∥
2
2 + ∥Θdec∥

2
2. (9.1)

The graph autoencoder model introduced above can only utilize the graph
structure but not be able to incorporate node features when they are available.
In (Kipf and Welling, 2016b), the graph neural network model is adopted as the
encoder, which utilizes both the graph structural information and node features.
Specifically, the encoder is modeled as:

Z = fGNN(A,X;ΘGNN),

where fGNN is the encoder which is a graph neural network model. In (Kipf and
Welling, 2016b), the GCN-Filter is adopted to build the encoder. The decoder
is to reconstruct the graph, which includes the adjacency matrix A and the
attribute matrix X. In (Kipf and Welling, 2016b), only the adjacency matrix A
is used as the target for reconstruction. Specifically, the adjacency matrix can

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

190 Beyond GNNs: More Deep Models on Graphs

𝑥! 𝑥" 𝑥# 𝑥$

𝑦! 𝑦" 𝑦# 𝑥$

Figure 9.1 A illustrative sequence

be reconstructed from the encoded representations Z as:

Â = σ(ZZT),

where σ(·) is the sigmoid function. The low-dimensional representations Z
can be learned by minimizing the reconstruction error between Â and A. The
objective can be modeled as:

−
∑

vi,v j∈V

(
Ai, j log Âi, j +

(
1 − Ai, j

)
log

(
1 − Âi, j

))
,

which can be viewed as the cross-entropy loss between A and Â.

9.3 Recurrent Neural Networks on Graphs

Recurrent neural networks in Section 3.4 have been originally designed to deal
with sequential data and have been generalized to learning representations for
graph-structured data in recent years. In (Tai et al., 2015), Tree-LSTM is in-
troduced to generalize the LSTM model to tree-structured data. A tree can be
regarded as a special graph, which does not have any loops. In (Liang et al.,
2016), Graph-LSTM is proposed to further extend the Tree-LSTM to generic
graphs. In this section, we first introduce the Tree-LSTM and then discuss
Graph-LSTM.

As shown in Figure 9.1, a sequence can be regarded as a specific tree where
each node (except for the first one) has only a single child, i.e., its previous
node. The information flows from the first node to the last node in the sequence.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

9.3 Recurrent Neural Networks on Graphs 191

𝑦!

𝑥!

𝑦"

𝑥"

𝑥# 𝑥$ 𝑥%

𝑦%𝑦#

𝑦&

Figure 9.2 A illustrative tree

Hence, as introduced in Section 3.4.2 and illustrated in Figure 3.13, the LSTM
model composes the hidden state of a given node in a sequence by using the
input at this node and also the hidden state from its previous node. However,
in comparison, as shown in Figure 9.2, in a tree, a node can have an arbitrary
number of child nodes. In a tree, the information is assumed to always flow
from the child nodes to the parent node. Hence, when composing the hidden
state for a node, we need to utilize its input and the hidden states of its child
nodes. Based on this intuition, the Tree-LSTM model is proposed to deal with
tree-structured data. To introduce the Tree-LSTM model, we follow the same
notations as those in Section 3.4.2. Specifically, for node vk in the tree, we use
x(k) as its input, h(k) as its hidden state, C(k) as its cell memory and Nc(vk) as
the set of its child nodes. Given a tree, the Tree-LSTM model composes the

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

192 Beyond GNNs: More Deep Models on Graphs

hidden state of node vk as:

h̃(k) =
∑

v j∈Nc(vk)

h(j) (9.2)

fk j = σ(W f · x(k) + U f · h
(j) + b f) for v j ∈ Nc(vk) (9.3)

ik = σ(Wi · x(k) + Ui · h̃(k) + bi) (9.4)

ok = σ(Wo · x(k) + Uo · h̃(k) + bo) (9.5)

C̃(k) = tanh(Wc · x(k) + Uc · h̃(k) + bc) (9.6)

C(k) = it ⊙ C̃(k) +
∑

v j∈Nc(vk)

fk j ⊙ C(j) (9.7)

h(k) = ot ⊙ tanh(C(k)). (9.8)

We next briefly describe the operation procedure of the Tree-LSTM model.
The hidden states of the child nodes of vk are aggregated to generate h̃(k) as
shown in Eq. (9.2). The aggregated hidden state h̃(k) is utilized to generate the
input gate, output gate and candidate cell memory in Eq. (9.4), Eq. (9.5) and
Eq. (9.6), respectively. In Eq. (9.3), for each child v j ∈ Nc(vk), a corresponding
forget gate is generated to control the information flow from this child node to
vk, when updating the memory cell for vk in Eq. (9.7). Finally, in Eq. (9.8), the
hidden state for node vk is updated.

Unlike trees, there are often loops in generic graphs. Hence, there is no
natural ordering for nodes in the generic graphs as that in trees. Breadth-First
Search (BFS) and Depth-First Search (DFS) are the possible ways to define
an ordering for the nodes as proposed in (Liang et al., 2016). Furthermore, the
ordering of nodes can also be defined according to the specific application at
hand. After obtaining an ordering for the nodes, we can use similar operations,
as shown from Eq. (9.2) to Eq. (9.8) to update the hidden state and cells for
these nodes following the obtained ordering. The major difference is that in
undirected graphs, Eq. (9.2) aggregates hidden states from all neighborsN(vk)
of node vk, while Tree-LSTM in Eq. (9.2) only aggregates information from the
child nodes of vk. Furthermore, the hidden states of some nodes in neighbors
N(vk) may not have been updated. In this case, the pre-updated hidden states
are utilized in the aggregation process.

9.4 Variational Autoencoders on Graphs

Variational Autoencoder (VAE) is a kind of generative models, which aims to
model the probability distribution of a given dataset X = {x1, . . . , xN}. It is also

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

9.4 Variational Autoencoders on Graphs 193

a latent variable model, which generates samples from latent variables. Given a
latent variable z sampled from a standard normal distribution p(z), we want to
learn a latent model, which can generate similar samples as these in the given
data with the following probability:

p(x|z;Θ) = N(x| f (z;Θ), σ2 · I), (9.9)

where N(| f (z;Θ), σ2 · I) denotes a Gaussian distribution with f (z;Θ), σ2 · I
as mean and covariance matrix respectively; Θ is the parameter to be learned
and x is a generated sample in the same domain as the given data. For ex-
ample, if the input data samples are images, we want to generate images as
well. f (z;Θ) is a deterministic function, which maps the latent variable z to
the mean of the probability of the generative model in Eq. (9.9). Note that, in
practice, the probability distribution of the generated samples is not necessary
to be Gaussian but can be other distributions according to specific applications.
Here, for convenience, we use Gaussian distribution as an example, which is
adopted when generating images in computer vision tasks. To ensure that the
generative model in Eq. (9.9) is representative of the given data X, we need to
maximize the following log likelihood for each sample xi in X:

log p(xi) = log
∫

p(xi|z;Θ)p(z)dz for xi ∈ X. (9.10)

However, the integral in Eq. (9.10) is intractable. Furthermore, the true pos-
terior p(z|x;Θ) is also intractable, which hinders the possibility of using the
EM algorithm. To remedy this issue, an inference model q(z|x;Φ) parame-
terized with Φ, which is an approximation of the intractable true posterior
p(z|x;Θ), is introduced (Kingma and Welling, 2013). Usually, q(z|x;Φ) is
modeled as a Gaussian distribution q(z|x;Φ) = N(µ(x;Φ),Σ(x;Φ)), where the
mean and covariance matrix are learned through some deterministic function
parameterized with Φ. Then, the log-likelihood in Eq. (9.10) can be rewritten
as:

log p(xi) = DKL(q(z|x;Φ)∥p(z|x;Θ)) +L(Θ,Φ; xi),

where L(Θ,Φ; xi) is called the variational lower bound of the log-likelihood
of xi as the KL divergence of the approximate and the true posterior (the first
term on the right hand side) is non-negative. Specifically, the variational lower
bound can be written as:

L(Θ,Φ; xi) = Eq(z|xi;Φ)
[
log p(xi|z;Θ)

]︸ ︷︷ ︸
reconstruction

−DKL(q(z|xi;Φ)∥p(z))︸ ︷︷ ︸
regularization

. (9.11)

Instead of maximizing the log-likelihood in Eq. (9.10) for samples in X, we

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

194 Beyond GNNs: More Deep Models on Graphs

aim to differentiate and maximize the variational lower bound in Eq. (9.11)
with respect to both Θ and Φ. Note that minimizing the negation of the vari-
ational lower bound −L(Θ,Φ; xi) resembles the process of the classic autoen-
coder as introduced in Section 3.5, which gives the name “Variational Au-
toencoder” to the model. Specifically, the first term on the right hand side of
Eq. (9.11) can be regarded as the reconstruction process, where q(z|xi;Φ) is
the encoder (the inference model) and p(xi|z;Θ) is the decoder (the generative
model). Different from the classical autoencoder, where the encoder maps a
given input to a representation, this encoder q(z|xi;Φ) maps an input xi into a
latent Gaussian distribution. Maximizing the first term on the right hand side of
Eq. (9.11) can be viewed as minimizing the distance between the input xi and
the decoded mean f (z;Θ) of p(xi|z;Θ). Meanwhile, the second term on the
right hand side of Eq. (9.11) can be regarded as a regularization term, which
enforces the approximated posterior q(z|xi;Φ) to be close to the prior distri-
bution p(z). After training, the generative model p(xi|z;Θ) can be utilized to
generate samples that are similar to the ones in the given data while the latent
variable can be sampled from the standard Gaussian distribution p(z).

9.4.1 Variational Autoencoders for Node Representation Learning

In (Kipf and Welling, 2016b), the variational autoencoder is adopted to learn
node representations on graphs. The inference model is to encode each node
into a multivariate Gaussian distribution and the joint distribution of all nodes
are shown below:

q(Z|X,A;Φ) =
∏
vi∈V

q (zi|X,A;Φ)

with q (zi|X,A;Φ) = N
(
zi|µi, diag

(
σ2

i

))
, (9.12)

where µi and σi are the mean and variance learned through deterministic graph
neural network models as follows:

µ = GNN(X,A;Φµ),

logσ = GNN(X,A;Φσ),

where µ and σ are matrices with µi and σi indicating their i-th rows, respec-
tively. The parameters Φµ and Φσ can be summarized as Φ in Eq. (9.12).
Specifically, in (Kipf and Welling, 2016b), the GCN-Filter is adopted as the
graph neural network model to build the inference model. The generative model,
which is to generate (reconstruct) the adjacent matrix of the graph, is modeled

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

9.4 Variational Autoencoders on Graphs 195

with the inner product between the latent variables Z as follows:

p(A|Z) =
N∏

i=1

N∏
j=1

p
(
Ai, j|zi, z j

)
,

with p
(
Ai, j = 1|zi, z j

)
= σ

(
z⊤i z j

)
,

where Ai, j is the i j-th element of the adjacency matrix A and σ(·) is the sig-
moid function. Note that there are no parameters in the generative model. The
variational parameters in the inference model are learned by optimizing the
variational lower bound as shown below:

L = Eq(Z|X,A;Φ)[log p(A|Z)] − KL[q(Z|X,A;Φ)∥p(Z)],

where p(Z) =
∏

i p (zi) =
∏

iN (zi|0, I) is a Gaussian prior enforced to the
latent variables Z.

9.4.2 Variational Autoencoders for Graph Generation

In the task of graph generation, we are given a set of graph {Gi} and try to
generate graphs that are similar to them. Variational Autoencoder has been
adopted to generate small graphs such as molecular graphs (Simonovsky and
Komodakis, 2018). Specifically, given a graphG, the inference model q(z|G;Φ)
aims to map it to a latent distribution. Meanwhile, the decoder can be repre-
sented by a generative model p(G|z;Θ). Both Φ and Θ are parameters, which
can be learned by optimizing the following variational lower bound of the log-
likelihood log p(G;Θ)) of G:

L(Φ,Θ;G)= Eq(z|G;Φ)
[
log p(G|z;Θ)

]
− DKL

[
q(z|G;Φ)∥p(z)

]
, (9.13)

where p(z) = N(0, I) is a Gaussian prior on z. Next, we describe the details
about the encoder (inference model) q(z|G;Φ), the decoder (generative model)
p(G|z;Θ) and finally discuss how to evaluate Eq(z|G;Φ)

[
log p(G|z;Θ)

]
.

Encoder: The Inference Model
In (Simonovsky and Komodakis, 2018), the goal is to generate small graphs
with few nodes. For example, molecular graphs are usually quite small. Fur-
thermore, these graphs are assumed to be associated with node and edge at-
tributes. In the case of molecular graphs, the node and edge attributes indicate
the type of nodes and edges, which are encoded as 1-hot vectors. Specifically, a
graph G = {A,F,E} can be represented by its adjacency matrix A ∈ {0, 1}N×N ,
node attributes F ∈ {0, 1}N×tn and also edge attributes E ∈ {0, 1}N×N×te . Usually,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

196 Beyond GNNs: More Deep Models on Graphs

in molecular graphs, the number of nodes N is in the order of tens. F is the ma-
trix indicting the attribute (type) of each node, where tn is the number of node
types. Specifically, the i-th row of F is a one-hot vector indicating the type of
i-th node. Similarly, E is a tensor indicating the types of edges where te is the
number of edge types. Note that, the graph is typically not complete and thus,
we do not have N × N edges. Hence, in E, the “one-hot” vectors correspond-
ing to the non-existing edges are 0 vectors. To fully utilize the given graph
information, the graph neural network model with pooling layers is utilized to
model the encoder as:

q(z|G;Φ) = N(µ,σ2),

µ = pool(GNNµ(G)); logσ = pool(GNNσ(G)),

where the mean and variance are learned by graph neural network models. In
detail, the ECC-Filter as introduced in Section 5.3.2 is utilized to build the
graph neural network model to learn the node representations while the gated
global pooling introduced in Section 5.4.1 is adopted to pool the node repre-
sentations to generate the graph representation.

Decoder: The Generative Model
The generative model aims to generate a graph G given a latent representa-
tion z. In other words, it is to generate the three matrices A, E, and F. In (Si-
monovsky and Komodakis, 2018), the size of the graphs to be generated is
limited to a small number k. In detail, the generative model is asked to output a
probabilistic fully connected graph with k nodes G̃ = {Ã, Ẽ, F̃}. In this proba-
bilistic graph, the existence of nodes and edges are modeled as Bernoulli vari-
ables while the types of nodes and edges are modeled as Multinomial variables.
Specifically, the predicted fully connected adjacency matrix Ã ∈ [0, 1]k×k con-
tains both the node existence probabilities at the diagonal elements Ãi,i and the
edge existence probabilities at the off-diagonal elements Ãi, j. The edge type
probabilities are contained in the tensor Ẽ ∈ Rk×k×te . The node type probabili-
ties are expressed in the matrix F̃ ∈ Rk×tn . Different architectures can be used
for modelling the generative model. In (Simonovsky and Komodakis, 2018),
a simple feedforward network model, which takes the latent variable z as in-
put and outputs three matrices in its last layer, is adopted. Sigmoid function
is applied to obtain Ã, which demonstrates the probability of the existence of
nodes and edges. Edge-wise and node-wise softmax functions are applied to
obtain Ẽ and F̃, respectively. Note that the obtained probabilistic graph G̃ can
be regarded as the generative model, which can be expressed as:

p(G|z;Θ) = p(G|G̃),

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

9.4 Variational Autoencoders on Graphs 197

where

G̃ = MLP(z;Θ).

The MLP() denotes the feedforward network model.

Reconstruction Loss
To optimize Eq. (9.13), it is remained to evaluate Eq(z|G;Φ)

[
log p(G|z;Θ)

]
, which

can be regarded evaluating how close the input graph G and the reconstructed
probabilistic graph G̃ are. Since there is no particular node ordering in graphs,
comparing two graphs is difficult. In (Simonovsky and Komodakis, 2018), the
max pooling matching algorithm (Cho et al., 2014b) is adopted to find corre-
spondences P ∈ {0, 1}k×N between the input graph G and the G̃. It is based on
the similarity between the nodes from the two graphs, where N denotes the
number of nodes in G and k is the number of nodes in G̃. Specifically, Pi, j = 1
only when the i-th node in G̃ is aligned with the j-th node in the original graph
G, otherwise Pi, j = 0. Given the alignment matrix P, the information in the two
graphs can be aligned to be comparable. In particular, the input adjacency ma-
trix can be mapped to the predicted graph as A′ = PAPT , while the predicted
node types and edge types can be mapped to the input graph as F̃′ = PT F̃ and
Ẽ′:,:,l = PT Ẽ:,:,lP. Then, Eq(z|G;Φ)

[
log p(G|z;Θ)

]
is estimated with a single latent

variable z sampled from q(z|G) as follows:

Eq(z|G;Φ)
[
log p(G|z;Θ)

]
≈ log p(G|z;Θ) = log p

(
A′,E,F|Ã, Ẽ′F̃′

)
,

where p
(
A′,E,F|Ã, Ẽ′F̃′

)
can be modeled as:

p
(
A′,E,F|Ã, Ẽ′F̃′

)
= λA log p(A′|Ã) + λE log p(E|Ẽ′) + λF log p(F|F̃′), (9.14)

where λA, λE and λF are hyperparameters. Specifically, the three terms in Eq. (9.14)
are the log-likelihood of the A′, E and F, respectively, which can be modeled
as the negation of the cross-entropy between A′ and Ã; E and Ẽ′; E and Ẽ′,
respectively. In detail, they can be formally stated as:

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

198 Beyond GNNs: More Deep Models on Graphs

log p(A′|Ã) =
1
k

k∑
i=1

[
A′i,i log Ãi,i + (1 − A′i,i) log(1 − Ãi,i)

]
+

1
k(k − 1)

k∑
i, j

[
A′i, j log Ãi, j + (1 − A′i, j) log(1 − Ãi, j)

]
,

log p(E|Ẽ′) =
1

∥A∥1 − N

N∑
i, j

log
(
E⊤i, j,:Ẽi, j,:

)
,

log p(F|F̃′) =
1
N

N∑
i=1

log
(
F⊤i,:F̃

′
i,:

)
.

9.5 Generative Adversarial Networks on Graphs

The generative adversarial nets (GANs) are a framework to estimate the com-
plex data distribution via an adversarial process where the generative model is
pitted against an adversary: a discriminative model that learns to tell whether a
sample is from the original data or generated by the generative model (Good-
fellow et al., 2014a). In detail, the generative model G(z;Θ) maps a noise vari-
able z sampled from a prior noise distribution p(z) to the data space with Θ
as its parameters. While, the discriminative model D(x;Φ) is modeled as a bi-
nary classifier with the parametersΦ, which tells whether a given data sample
x is sampled from the data distribution pdata(x) or generated by the generative
model G. Specifically, D(x;Φ) maps x to a scalar indicating the probability
that x comes from the given data rather than being generated by the generative
model. During the training procedure, the two models are competing against
each other. The generative model tries to learn to generate fake samples that
are good enough to fool the discriminator, while the discriminator tries to im-
prove itself to identify the samples generated by the generative model as fake
samples. The competition drives both models to improve themselves until the
generated samples are indistinguishable from the real ones. This competition
can be modeled as a two-player minimax game as:

min
Θ

max
Φ
Ex∼pdata(x)

[
log D(x;Φ)

]
+ Ez∼p(z)

[
log(1 − D(G(z;Θ)))

]
.

The parameters of the generative model and the discriminative model are op-
timized alternatively. In this section, we will use node representation learning
and graph generation tasks as examples to describe how the GAN frameworks
can be applied to graph-structured data.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

9.5 Generative Adversarial Networks on Graphs 199

9.5.1 Generative Adversarial Networks for Node Representation
Learning

In (Wang et al., 2018a), the GAN framework is adapted for node representa-
tion learning. Given a node vi, the generative model aims to approximate the
distribution of its neighbors. It can be denoted as p(v j|vi) that is defined over
the entire set of nodes V. The set of its real neighbors N(vi) can be regarded
as the observed samples drawn from p(v j|vi). The generator, which is denoted
as G(v j|vi;Θ), tries to generate (more precisely, select) the node that is most
likely connected with node vi fromV. G(v j|vi;Θ) can be regarded as the prob-
ability of sampling v j as a fake neighbor of node vi. The discriminator, which
we denoted as D(v j, vi;Φ), tries to tell whether a given pair of nodes (v j, vi) are
connected or not in the graph. The output of the discriminator can be regarded
as the probability of an edge existing between the two nodes v j and vi. The
generator G and the discriminator D compete against each other: the generator
G tries to fit the underlying probability distribution ptrue(v j|vi) perfectly such
that the generated (selected) node v j is relevant enough to the node vi to fool
the discriminator. While the discriminator tries to differentiate the nodes gen-
erated by the generator from the real neighbors of node vi. Formally, the two
models are playing the following minimax game:

min
Θ

max
Φ

V(G,D) =
∑

vi∈V

(
Ev j∼ptrue (v j |vi)

[
log D

(
v j, vi;Φ

)]
+Ev j∼G(v j |vi;Θ)

[
log

(
1 − D

(
v j, vi;Φ

))]) .

The parameters of the generator G and the discriminator D can be optimized by
alternatively maximizing and minimizing the objective function V(G,D). Next,
we describe the details of the design of the generator and the discriminator.

The Generator
A straightforward way to model the generator is to use a softmax function over
all nodesV as:

G(v j|vi;Θ) =
exp

(
θ⊤j θi

)
∑

vk∈V

exp
(
θ⊤k θi

) , (9.15)

where θi ∈ R
d denotes the d-dimensional representation for the node vi specific

to the generator, andΘ includes the representations for all nodes (They are also
the parameters of the generator). Note that, in this formulation, the relevance
between nodes are measured by the inner product of the representations of the
two nodes. This idea is reasonable as we expect the low-dimensional repre-
sentations to be closer if the two nodes are more relevant to each other. Once

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

200 Beyond GNNs: More Deep Models on Graphs

the parameters Θ are learned, given a node vi, the generator G can be used to
sample nodes according to the distribution G(v j|vi;Θ). As we mentioned be-
fore, instead of generating fake nodes, the procedure of the generator should
be more precisely described as selecting a node from the entire setV.

While the softmax function in Eq. (9.15) provides an intuitive way to model
the probability distribution, it suffers from severe computational issue. Specif-
ically, the computational cost of the denominator of Eq. (9.15) is prohibitively
expensive due to the summation over all nodes inV. To solve this issue, hier-
archical softmax (Morin and Bengio, 2005; Mikolov et al., 2013) introduced
in Section 4.2.1 can be adopted.

The Discriminator
The discriminator is modeled as a binary classifier, which aims to tell whether
a given pair of node (v j, vi) are connected with an edge in the graph or not. In
detail, D

(
v j, vi;Φ

)
models the probability of the existence of an edge between

nodes v j and vi as:

D
(
v j, vi;Φ

)
= σ

(
ϕ⊤j ϕi

)
=

1

1 + exp
(
−ϕ⊤j ϕi

) , (9.16)

where ϕi ∈ R
d is the low-dimensional representation of node vi specific to the

discriminator. We use the notation Φ to denote the union of representations of
all nodes, which are the parameters of the discriminator to be learned. After
training, the node representations from both the generator and discriminator or
their combination can be utilized for the downstream tasks.

9.5.2 Generative Adversarial Networks for Graph Generation

The framework of generative adversarial networks has been adapted for graph
generation in (De Cao and Kipf, 2018). Specifically, the GAN framework is
adopted to generate molecular graphs. As similar to Section 9.4.2, a molecular
graph Gwith N nodes is represented by two objects: 1) A matrix F ∈ {0, 1}N×te ,
which indicates the type of all nodes. The i-th row of the matrix F corresponds
to the i-th node and tn is the number of node types (or different atoms); and 2)
A tensor E ∈ {0, 1}N×N×te indicating the type of all edges where te is the number
of edge types (or different bonds). The generator’s goal is not only to generate
molecular graphs similar to a given set of molecules but also to optimize some
specific properties such as the solubility of these generated molecules. Hence,
in addition to the generator and the discriminator in the GAN framework, there
is also a judge. It measures how good a generated graph is in terms of the
specific property (to assign a reward). The judge is a network pre-trained on

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

9.5 Generative Adversarial Networks on Graphs 201

some external molecules with ground truth. It is only used to provide guidance
for generating desirable graphs. During the training procedure, the generator
and discriminator are trained through competing against each other. However,
the judge network is fixed and serves as a black box. Specifically, the generator
and the discriminator are playing the following two-player minimax game:

min
Θ

max
Φ
EG∼pdata(G)

[
log D(G;Φ)

]
+ Ez∼p(z)

[
log(1 − D(G(z;Θ))) − λJ(G(z;Θ))

]
,

where pdata(G) denotes the true distribution of the given molecular graphs and
J() is the judge network. The judge network produces a scalar indicating some
specific property of the input required to be maximized. Next, we describe the
generator, the discriminator, and the judge network in the framework.

The Generator
The generator G(z;Θ) is similar to the one we introduced in Section 9.4.2,
where a fully connected probabilistic graph is generated given a latent rep-
resentation z sampled from a noise distribution p(z) = N(0, I). Specifically,
the generator G(z;Θ) maps a latent representation z to two continuous dense
objects. They are used to describe the generated graph with k nodes – Ẽ ∈
Rk×k×te , which indicates the probability distributions of the type of edges; and
F̃ ∈ Rk×tn , which denotes the probability distribution of the types of nodes. To
generate molecular graphs, discrete matrices of E and F are sampled from Ẽ
and F̃, respectively. During the training procedure, the continuous probabilis-
tic graph Ẽ and F̃ can be utilized such that the gradient can be successfully
obtained through back-propagation.

The Discriminator and the Judge Network
Both the discriminator and the judge network receive a graph G = {E,F} as
input, and output a scalar value. In (De Cao and Kipf, 2018), the graph neural
network model is adopted to model these two components. In detail, the graph
representation of the input graph G is obtained as:

hG = pool(GNN(E,F)),

where GNN() denotes several stacked graph filtering layers and pool() indi-
cates the graph pooling operation. Specifically, in (De Cao and Kipf, 2018), the
gated global pooling operation introduced in Section 5.4.1 is adopted as the
pooling operation to generate the graph representation hG. The graph repre-
sentation is then fed into a few more fully connected layers to produce a scalar
value. In particular, in the discriminator, the produced scalar value between 0
and 1 measures the probability that the generated graph is a “real” molecular
graph from the given set of graphs. Meanwhile, the judge network outputs a

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

202 Beyond GNNs: More Deep Models on Graphs

scalar value that indicates the specific property of the graph. The discriminator
needs to be trained alternatively with the generator. However, the judge net-
work is pre-trained with the additional source of molecular graphs, and then it
is treated as a fixed black box during the training of the GAN framework.

9.6 Conclusion

This chapter introduces more deep learning techniques on graphs. They in-
clude deep autoencoders, variational autoencoders (VAEs), recurrent neural
networks (RNNs), and generative adversarial networks (GANs). Specifically,
we introduce the graph autoencoders and recurrent neural networks, which are
utilized to learn node representations. We then introduced two deep generative
models: variational autoencoder and generative adversarial networks. We use
the tasks of node representation learning and graph generation to illustrate how
to adapt them to graphs.

9.7 Further Reading

Deep graph models beyond GNNs have greatly enriched deep learning meth-
ods on graphs and tremendously extended its application areas. In this chapter,
we only introduce representative algorithms in one or two application areas.
There are more algorithms and applications. In (Jin et al., 2018), variational
autoencoder is utilized with graph neural networks for molecular graph gener-
ation. In (Ma et al., 2018b), additional constraints are introduced to variational
graph autoencoders to generate semantically valid molecule graphs. In (You
et al., 2018a), the GAN framework is combined with reinforcement learning
techniques for molecule generation, where graph neural networks are adopted
to model the policy network. Furthermore, recurrent neural networks are also
utilized for graph generation (You et al., 2018b; Liao et al., 2019), where se-
quence of nodes and the connections between these nodes are generated.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

PART THREE

APPLICATIONS

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

10
Graph Neural Networks in Natural Language

Processing

10.1 Introduction

Graphs have been extensively utilized in natural language process (NLP) to
represent linguistic structures. The constituency-based parse trees represent
phrase structures for a given sentence. The syntactic dependency trees encode
syntactic relations in terms of tree structures (Jurafsky and Martin, n.d.). Ab-
stract meaning representation (AMR) denotes semantic meanings of sentences
as rooted and labeled graphs that are easy for the program to traverse (Ba-
narescu et al., 2013). These graph representations of natural languages carry
rich semantic and/or syntactic information in an explicit structural way. Graph
neural networks (GNNs) have been adopted by various NLP tasks where graphs
are involved. These graphs include those mentioned above and also other graphs
designed specifically for particular tasks. Specifically, GNNs have been uti-
lized to enhance many NLP tasks such as semantic role labeling (Marcheg-
giani and Titov, 2017), (multi-hop) question answering (QA) (De Cao et al.,
2019; Cao et al., 2019; Song et al., 2018a; Tu et al., 2019), relation extrac-
tion (Zhang et al., 2018c; Fu et al., 2019; Guo et al., 2019; Zhu et al., 2019b;
Sahu et al., 2019; Sun et al., 2019a; Zhang et al., 2019d), neural machine
translation (Marcheggiani et al., 2018; Beck et al., 2018), and graph to se-
quence learning (Cohen, 2019; Song et al., 2018b; Xu et al., 2018b). Further-
more, knowledge graphs, which encode multi-relational information in terms
of graphs, are widely adopted by NLP tasks. There are also many works (Ham-
aguchi et al., 2017; Schlichtkrull et al., 2018; Nathani et al., 2019; Shang
et al., 2019a; Wang et al., 2019c; Xu et al., 2019a) generalizing GNN mod-
els to knowledge graphs. In this chapter, we take semantic role labeling, neural
machine translation, relation extraction, question answering, and graph to se-
quence learning as examples to demonstrate how graph neural networks can

205

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

206 Graph Neural Networks in Natural Language Processing

The policeman detained the suspect at the park.
Agent Predicate Theme Location

Who did what to whom at where?

Figure 10.1 An illustrative sentence with semantic labels.

be applied to NLP tasks. We also introduce the graph neural network models
designed for knowledge graphs.

10.2 Semantic Role Labeling

In (Marcheggiani and Titov, 2017), GNNs are utilized on syntactic dependency
trees to incorporate syntactic information to improve the performance of Se-
mantic Role Labeling (SRL). It is among the first to show that graph neural
network models are effective on NLP tasks. In this section, we first describe
the task of Semantic Role Labeling (SRL) and then introduce how GNNs can
be leveraged for this task.

Semantic Role Labeling aims to discover the latent predicate-argument struc-
ture of a sentence, which can be informally regarded as the task of discovering
“who did what to whom at where?”. For example, a sentence with semantic
labels is shown in Figure 10.1 where the word “detained” is the predicate,
“the policeman” and “the suspect” are its two arguments with different labels.
More formally, the task of SRL involves the following steps: 1) detecting the
predicates such as “detained” in Figure 10.1; and 2) identifying the arguments
and labeling them with semantic roles, i.e., “the policeman” is the agent while
“the suspect” is the theme. In (Marcheggiani and Titov, 2017), the studied SRL
problem (on CoNLL-2009 benchmark) is simplified a little bit, where the pred-
icate is given in the test time (e.g., we know that “detained” is the predicate in
the example shown in Figure 10.1), hence no predicate detection is needed.
The remaining task is to identify the arguments of the given predicate and la-
bel them with semantic roles. It can be treated as a sequence labeling task. In
detail, the semantic role labeling model is asked to label all the arguments of
the given predicate with their corresponding labels and label “NULL” for all
the non-argument elements.

To tackle this problem, a Bi-directional LSTM (Bi-LSTM) encoder is adopted
by (Marcheggiani and Titov, 2017) to learn context-aware word representa-
tions. These learned word representations are later utilized to label each of the

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

10.2 Semantic Role Labeling 207

elements in the sequence. We denote a sentence as [w0, . . . ,wn], where each
word wi in the sequence is associated with an input representation xi. The input
representation consists of four components: 1) a randomly initialized embed-
ding; 2) a pre-trained word embedding; 3) a randomly initialized embedding
for its corresponding part-of-speech tag; and 4) a randomly initialized lemma
embedding, which is active only when the word is a predicate. These four em-
beddings are concatenated to form the input representation xi for each word
wi. Three of the embeddings except the pre-trained embedding are updated
during the training. The sequence [x0, . . . , xn] is then utilized as the input for
the Bi-LSTM (Goldberg, 2016). Specifically, the Bi-LSTM model consists of
two LSTMs with one dealing with the input sequence for the forward pass
while the other handling the sequence for the backward pass. The operations
of a single LSTM unit is introduced in Section 3.4.2. In the following, we
abuse the notation a little bit to use LSTM() to denote the process of dealing a
sequence input with LSTM. The process of the forward and backward LSTM
can be denoted as:

[x f
0 , . . . , x

f
n] = LSTM f ([x0, . . . , xn]),

[xb
0, . . . , x

b
n] = LSTMb([xn, . . . , x0]),

where LSTM f denotes the forward LSTM, which captures the left context for
each word, while LSTMb denotes the backward LSTM that captures the right
context for each word. Note that, xb

i is the output representation from LSTMb

for the word wn−i. The outputs of the two LSTMs are concatenated as the out-
put of the Bi-LSTM, which captures the context information from both direc-
tions as:

[xbi
0 , . . . , x

bi
n] = Bi-LSTM([x0, . . . , xn]),

where xbi
i is the concatenation of x f

i and xb
n−i. With the output of Bi-LSTM,

the labeling task is treated as a classification problem for each candidate word
with the semantic labels and “NULL” as labels. Specifically, the input of the
classifier is the concatenation of the output representations from the Bi-LSTM
for the candidate word xbi

c and for the predicate xbi
p .

To enhance the algorithm described above, syntactic structure information
is incorporated by utilizing graph neural network models on syntactic depen-
dency trees (Marcheggiani and Titov, 2017). In detail, the aggregation process
in the graph neural network model is generalized to incorporate directed la-
beled edges such that it can be applied to syntactic dependency trees. To incor-
porate the sentence’s syntactic information, the output of the Bi-LSTM layer is
employed as the input of the graph neural network model. Then, the output of

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

208 Graph Neural Networks in Natural Language Processing

Sequa makes and repairs jet engines.

ROOT
COORD CONJ

OBJ
SBJ

NMOD

Figure 10.2 The dependency tree of the sentence “Sequa makes and repairs jet
engines.”

the graph neural network model is used as the input for the linear classifier de-
scribed above. Next, we first briefly introduce syntactic dependency trees and
then describe how the graph neural network model is modified for syntactic
dependency trees.

A syntactic dependency tree is a directed labeled tree encoding the syntactic
dependencies in a given sentence. Specifically, the words in the sentence are
treated as the nodes for the dependency tree while the directed edges describe
the syntactic dependency between them. The edges are labeled with various
dependency relations such as “Subject” (SBJ) and “Direct Object” (DOBJ).
As an illustrative example, the dependency tree of the sentence “Sequa makes
and repairs jet engines.” is shown in Figure 10.2, where “Sequa” is the subject
of the verb “makes” and “engines” is the objective of “makes”. As the edges
are directed and labeled in the dependency tree, to adopt the graph neural net-
work model to incorporate the direction and label information in the edge, the
following generalized graph filtering operator (for the l-th layer) is proposed
in (Marcheggiani and Titov, 2017):

F(l)
i = σ

 ∑
v j∈N(vi)

F(l−1)
j Θ

(l−1)
dir(i, j) + blab(i, j)

 , (10.1)

where N(vi) consists of both in-going and out-going neighbors of node vi,
dir(i, j) ∈ {in-going, out-going} denotes the direction of the edge (vi, v j) in
terms of the center node vi, Θ

(l−1)
dir(i, j) are the parameters shared by the edges that

have the same direction as (vi, v j) and blab(i, j) is a bias term to incorporate the
label information on the edge with lab(i, j) denoting the dependency relation
of (vi, v j). The filter described in Eq. (10.1) is utilized to build a graph neural
network model with L layers for the SRL task.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

10.3 Neural Machine Translation 209

10.3 Neural Machine Translation

Machine translation is an essential task in natural language processing. With
the development of deep learning, neural networks have been widely adopted
for machine translation. These neural networks based models are called as
neural machine translation models, which usually take the form of encoder-
decoder. The encoder takes a sequence of words in the source language as
input and outputs a representation for each word in the sequence. Then the de-
coder, relying on the representations from the encoder, outputs a translation (or
a sequence of words in the target language). Both the encoder and decoder are
usually modeled with recurrent neural networks or their variants. For example,
the Bi-LSTM introduced in Section 10.2 is a popular choice for the encoder
while RNN models equipped with the attention mechanism (Bahdanau et al.,
2014) is the popular choice for the decoder. In (Marcheggiani et al., 2018),
to incorporate the syntactic structure information in the sentence to enhance
the performance of machine translation, the same strategy that is introduced
in Section 10.2 is adopted to design the encoder. The decoder keeps the same
as the traditional model, i.e., the attention-based RNN model. Next, we briefly
describe the encoder, as we have already introduced it in Section 10.2. Specif-
ically, a Bi-LSTM model is first utilized for encoding the sequence. These
representations from Bi-LSTM are then served as the input for a graph neural
network model on the syntactic dependency tree. The formulation of a sin-
gle graph filtering operation of the graph neural network model is shown in
Eq. (10.1). The output of the graph neural network model is then leveraged as
the input for the decoder (Bastings et al., 2017).

10.4 Relation Extraction

Graph Neural Networks have also been applied to the relation extraction (RE)
task (Zhang et al., 2018c; Fu et al., 2019; Guo et al., 2019; Zhu et al., 2019b;
Sahu et al., 2019; Sun et al., 2019a; Zhang et al., 2019d). Specifically, the
works (Zhang et al., 2018c; Fu et al., 2019; Guo et al., 2019) adopt and/or
modify the graph neural network model (i.e., Eq. (10.1)) in (Marcheggiani and
Titov, 2017) to incorporate the syntactic information for the task of relation
extraction. The first work applying graph neural networks to RE is introduced
in (Zhang et al., 2018c). In this section, we briefly describe the task of RE and
then use the model in (Zhang et al., 2018c) as an example to demonstrate how
graph neural networks can be adopted to RE.

The task of relation extraction is to discern whether a relation exists between

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

210 Graph Neural Networks in Natural Language Processing

two entities (i.e., subject and object) in a sentence. More formally, it can be de-
fined as follows. LetW = [w1, . . . ,wn] denote a sentence, where wi is the i-th
token in the sentence. An entity is a span consisting of consecutive words in
the sentence. Specifically, a subject entity, which consists of a series of con-
secutive words, can be represented asWs = [ws1 : ws2]. Similarly, an object
entity can be expressed asWo = [wo1 : wo2]. The goal of relation extraction
is to predict the relation for the subject entity Ws and the object entity Wo

given the sentence W, where Ws and Wo are assumed to be given. The re-
lation is from a predefined set R, which also includes a special relation “no
relation” indicating that there is no relation between these two entities. The
problem of relation extraction is treated as a classification problem in (Zhang
et al., 2018c). The input is the concatenation of the representations of the sen-
tence W, the subject entity Ws and the object entity Wo. The output labels
are the relations in R. Specifically, the relation prediction for a pair of entities
is through a feed-forward neural network (FFNN) with parameters ΘFFNN as
shown below:

p = softmax([Fsent,Fs,Fo]ΘFFNN)),

where softmax() is the softmax function, p is the probability distribution over
the relations in the set R, and Fsent,Fs,Fo represent the vector representations
of the sentence, the subject entity and the object entity, respectively. To cap-
ture the context information of the sentence while also capturing the syntactic
structure of the sentence, a very similar procedure as (Marcheggiani and Titov,
2017) (i.e. the model we introduced in Section 10.2 for SRL) is adopted to
learn the word representations, which are then utilized to learn the representa-
tions for the sentence, subject entity and object entity. The major difference is
that a self-loop is introduced to include the word itself during representation
updating in Eq. (10.1). In other words, N(vi) in Eq. (10.1) for RE consists of
the node vi, and its in-going and out-going neighbors. They also empirically
find that including the direction and edge label information does not help for
the RE task.

Given the word representations from the model consisting of L graph filter-
ing layers described above, the representations for sentence, the subject entity
and object entity are obtained by max pooling as:

Fsent = max(F(L)),

Fs = max(F(L)[s1 : s2]),

Fo = max(F(L)[o1 : o2]), (10.2)

where F(L), F(L)[s1 : s2], and F(L)[o1 : o2] denote the sequence of word rep-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

10.5 Question Answering 211

resentations for the entire sentence, the subject entity and the object entity, re-
spectively. The max-pooling operation takes the maximum of each dimension
and thus results in a vector with the same dimension as the word representa-
tion.

10.5 Question Answering

Machine reading comprehension (RC) or question answering (QA) aims to
generate the correct answer for a given query/question by consuming and com-
prehending documents. It is an important but challenging task in NLP. Graph
neural networks have been widely adopted to enhance the performance of the
QA task, especially multi-hop QA (De Cao et al., 2019; Cao et al., 2019; Song
et al., 2018a; Tu et al., 2019), where across-document reasoning is needed to
answer a given query. This section introduces the multi-hop QA and one of the
representative works, which utilize graph neural networks for this task. We first
introduce the setting of multi-hop QA based on the WIKIHOP dataset (Welbl
et al., 2018), which is created specifically for evaluating multi-hop QA models.
We then describe the entity-GCN proposed in (De Cao et al., 2019) to tackle
the multi-hop QA task.

10.5.1 The Multi-hop QA Task

In this subsection, we briefly discuss the setting of multi-hop QA based on
the WIKIHOP dataset. The WIKIHOP dataset consists of a set of QA samples.
Each sample can be denoted as a tuple (q, S q,Cq, a⋆), where q is a query/question,
S q is a set of supporting documents, Cq is a set of candidate answers to be cho-
sen from (all of which are entities in the set of supporting documents S q) and
a⋆ ∈ Cq is the correct answer to the query. Instead of natural language, the
query q is given in the form of a tuple (s, r, ?), where s is the subject, r denotes
the relation, and the object entity is unknown (marked as “?”) to be inferred
from the support documents. A sample from the WIKIHOP dataset is shown in
Figure 10.3, where the goal is to choose the correct “country” for the Hanging
Gardens of Mumbai from the candidate set Cq ={Iran, India, Pakistan, Soma-
lia}. In this example, to find the correct answer for the query, multi-hop reason-
ing is required: 1) from the first document, it can be figured out that Hanging
Gardens are located in Mumbai; and 2) then, from the second document, it can
be found that Mumbai is a city in India, which, together with the first evidence,
can lead to the correct answer for the query. The goal of multi-hop QA is to
learn a model that can identify the correct answer a⋆ for a given query q from

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

212 Graph Neural Networks in Natural Language Processing

The Hanging Gardens, in [Mumbai], also known as
Pherozeshah Mehta Gardens, are terraced gardens … They
provide sunset views over the [Arabian Sea] …

Mumbai (also known as Bombay, the official name until 1995)
is the capital city of the Indian state of Maharashtra. It is the
most populous city in India …

The Arabian Sea is a region of the northern Indian Ocean
bounded on the north by Pakistan and Iran, on the west by
northeastern Somalia and the Arabian Peninsula, and on the
east by India …

Q: {Hanging gardens of Mumbai, country, ?}

Options: {Iran, India, Pakistan, Somalia, …}

Figure 10.3 A sample from the WIKIHOP dataset

the candidate set Cq by consuming and comprehending the set of the support
documents S q.

10.5.2 Entity-GCN

To capture the relations between the entities within- and across-documents
and consequently help the reasoning process across documents, each sample
(q, S q,Cq, a⋆) of the multi-hop QA task is organized into a graph by connecting
mentions of candidate answers within and across the supporting documents. A
generalized graph neural network model (i.e., Entity-GCN) is then proposed
to learn the node representations, which are later used to identify the correct
answer from the candidate sets for the given query. Note that L graph filtering
layers are applied to ensure that each mention (or node) can access rich infor-
mation from a wide range of neighborhoods. Next, we first describe how the
graph is built and then introduce the process of solving the QA task using the
proposed Entity-GCN.

Entity Graph
For a given sample (q, S q,Cq, a⋆), to build a graph, the mentions of entities in
Cq ∪ {s} are identified from the supporting document set S q, and each mention
is considered as a node in the graph. These mentions include 1) entities in S q

that exactly match an element in Cq ∪ {s} and 2) entities that are in the same

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

10.5 Question Answering 213

co-reference chain as an element in Cq∪{s}. An end-to-end co-reference resolu-
tion technique (Lee et al., 2017) is utilized to discover the co-reference chains.
Various types of edges are constructed to connect these mentions (or nodes)
as follows: 1) “Match”: two mentions (either within or across documents) are
connected by a “Match” edge, if they are identical; 2) “DOC-BASED”: two
mentions are connected via “DOC-BASED” if they co-occur in the same sup-
port document; and 3) “COREF”: two mentions are connected by a “COREF”
edge if they are in the same co-reference chain. These three types of edges
describe three different types of relations between these mentions. Besides, to
avoid disconnected components in the graph, the fourth type of edges is added
between any pairs of nodes that are not connected. These edges are denoted as
“COMPLEMENT” edges, which make the graph a complete graph.

Multi-step Reasoning with Entity-GCN on Entity Graph
To approach multi-step reasoning, a generalized graph neural network model
Entity-GCN is proposed to transform and propagate the node representations
through the built entity graph. Specifically, the graph filter (for the l-th layer) in
Entity-GCN can be regarded as instantiating the MPNN framework in Eq. (5.40)
to deal with edges of different types as:

m(l−1)
i = F(l−1)

i Θ(l−1)
s +

1
|N(vi)|

∑
r∈R

∑
v j∈Nr(vi)

F(l−1)
j Θ(l−1)

r , (10.3)

a(l−1)
i = σ

([
m(l)

i ,F
(l−1)
i

]
Θ(l−1)

a

)
, (10.4)

h(l)
i = ρ

(
m(l−1)

i

)
⊙ a(l−1)

i + F(l−1)
i ⊙

(
1 − a(l−1)

i

)
, (10.5)

where R = {MATCH,DOC-BAS ED,COREF,COMPLEMENT } denotes the
set of types of edges,Nr(vi) is the set of nodes connected with node vi through
edges of the type r, Θ(l−1)

r indicates parameters shared by edges of the type r
andΘ(l−1)

s andΘ(l−1)
a are shared by all nodes. The output in Eq. (10.4) is served

as a gating system to control the information flow in the message update part
of Eq. (10.5). The representation for each node vi is initialized as:

F(0)
i = fx(q, xi),

where q denotes the query representation from the pre-trained model ELMo (Pe-
ters et al., 2018) and xi is the pre-trained representation for node vi from ELMo
and fx(,) is parameterized by a feed-forward neural network.

The final node representations F(L)
i from the Entity-GCN with L graph filter-

ing layers are used to select the answer for the given query from the candidate
set. In detail, the probability of selecting a candidate c ∈ Cq as the answer is

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

214 Graph Neural Networks in Natural Language Processing

modeled as:

P
(
c|q,Cq, S q

)
∝ exp

(
max
vi∈Mc

fo
([

q,F(L)
i

]))
,

where fo is a parameterized transformation, Mc is the set of mentions corre-
sponding to the candidate c, and the max operator is to select the mention in
Mc with the largest predicted probability for the candidate. In (Song et al.,
2018a), instead of selecting the mention with the largest probability inMc, all
mentions of a candidate c are utilized to model P

(
c|q,Cq, S q

)
. Specifically,

P
(
c|q,Cq, S q

)
=

∑
vi∈Mc

αi∑
vi∈M

αi
,

where we useM to denote all the mentions, i.e., all nodes in the entity graph
and αi is modeled by the softmax function as:

αi =
exp

(
fo

([
q,F(L)

i

]))
∑

vi∈M

exp
(

fo
([

q,F(L)
i

])) .

10.6 Graph to Sequence Learning

Sequence to sequence models have been broadly applied to natural language
processing tasks such as neural machine translation (NMT) (Bahdanau et al.,
2014) and natural language generation (NLG) (Song et al., 2017). Most of
these proposed models can be viewed as encoder-decoder models. In a encoder-
decoder model, an encoder takes a sequence of tokens as input and encodes it
into a sequence of continuous vector representations. Then, a decoder takes
the encoded vector representations as input and outputs a new target sequence.
Usually, recurrent neural networks (RNNs) and its variants serve as both the
encoder and the decoder. As the natural languages can be represented in terms
of graphs, graph to sequence models have emerged to tackle various tasks in
NLP, such as neural machine translation (NMT) (Marcheggiani et al., 2018;
Beck et al., 2018) (see Section 10.3 for details) and AMR-to-text (Cohen,
2019; Song et al., 2018b). These graph to sequence models usually utilize
graph neural networks as the encoder (or a part of the encoder) while still
adopting RNN and its variants as its decoder. Specifically, the graph neural net-
work model described in Eq. (10.1) (Marcheggiani and Titov, 2017) is utilized
as encoder in (Marcheggiani et al., 2018; Song et al., 2018b; Cohen, 2019) for
neural machine translation and AMR-to-text tasks. A general encoder-decoder

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

10.6 Graph to Sequence Learning 215

graph2seq framework for graph to sequence learning is proposed in (Xu et al.,
2018b). It utilizes the graph neural network model as the encoder, and an at-
tention mechanism equipped RNN model as the decoder. We first describe the
GNN-based encoder model and then briefly describe the decoder.

GNN-based Encoder
Most of graphs in NLP applications such as the AMR and syntactic depen-
dency trees are directed. Hence, the GNN-based encoder in graph2seq is de-
signed to differentiate the incoming and outgoing neighbors while aggregating
information. Specially, for a node vi, its neighbors are split into two sets –
the incoming neighbors Nin(vi) and the outgoing neighbors Nout(vi). The ag-
gregation operation in GraphSAGE-Filter (See details on GraphSAGE-Filter
in Section 5.3.2) is used to aggregate and update the node representations.
Specifically, two node representations for each node are maintained, i.e., the
in-representation and the out-representation. The updating process for node vi

in the l-th layer can be expressed as:

F(l)
Nin(vi)

= AGGREGATE({F(l−1)
out (v j),∀v j ∈ Nin(vi)}),

F(l)
in (vi) = σ

(
[F(l−1)

in (vi),F(l)
Nin(vi)

]Θ(l−1)
in

)
,

F(l)
Nout(vi)

= AGGREGATE({F(l−1)
in (v j),∀v j ∈ Nout(vi)}),

F(l)
out(vi) = σ

(
[F(l−1)

out (vi),F(l)
Nout(vi)

]Θ(l−1)
out

)
,

where F(l)
in (vi) and F(l)

out(vi) denote the in- and out-representations for node vi

after l-th layer. As introduced for the GraphSAGE-Filter in Section 5.3.2, var-
ious designs for AGGREGATE() functions can be adopted. The final in- and
out-representations after L graph filtering layers are denoted as F(L)

in (vi) and
F(L)

out(vi), respectively. These two types of representations are concatenated to
generate the final representations containing information from both directions
as:

F(L)(vi) =
[
F(L)

in (vi),F(L)
out(vi)

]
.

After obtained the node representations, a graph representation is also gener-
ated by using pooling methods, which is used to initialize the decoder. The
pooling process can be expressed as:

FG = Pool
({

F(L(vi),∀vi ∈ V
})
.

Here, various flat pooling methods such as max pooling and average pooling
can be adopted. The decoder is modeled by an attention-based recurrent neural
network. It attends to all node representations when generating each token of

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

216 Graph Neural Networks in Natural Language Processing

the sequence. Note that the graph representation FG is utilized as the initial
state of the RNN decoder.

10.7 Graph Neural Networks on Knowledge Graphs

Formally, a knowledge graph G = (V,E,R) consists a set of nodesV, a set of
relational edges E and a set of relations R. The nodes are various types of enti-
ties and attributes, while the edges include different types of relations between
the nodes. Specifically, an edge e ∈ E can be represented as a triplet (s, r, t)
where s, t ∈ V are the source and target nodes of the edge respectively, and
r ∈ R denotes the relation between them. Graph neural networks have been
extended to knowledge graphs to learn node representations and thus facili-
tate various downstream tasks, including knowledge graph completion (Ham-
aguchi et al., 2017; Schlichtkrull et al., 2018; Nathani et al., 2019; Shang et al.,
2019a; Wang et al., 2019f), node importance estimation (Park et al., 2019), en-
tity linking (Zhang et al., 2019b) and cross-language knowledge graph align-
ment (Wang et al., 2018c; Xu et al., 2019e). The major difference between the
knowledge graphs and simple graphs is the relational information, which is
important to consider when designing graph neural networks for knowledge
graphs. In this section, we first describe how graph neural networks are gen-
eralized to knowledge graphs. Especially, there are majorly two ways to deal
with the relational edges in knowledge graphs: 1) incorporating the relational
information of the edges into the design of graph filters; and 2) transforming
the relational knowledge graph into a simple undirected graph by capturing the
relational information. Then, we use the task of knowledge graph completion
as an example to illustrate GNN based applications on knowledge graphs.

10.7.1 Graph Filters for Knowledge Graphs

Various graph filters have been specifically designed for knowledge graphs. We
describe representative ones next. The GGNN-Filter described in Eq. (5.22) is
adapted to knowledge graphs (Schlichtkrull et al., 2018) as:

F(l)
i =

∑
r∈R

∑
v j∈Nr(vi)

1
|Nr(vi)|

F(l−1)
j Θ(l−1)

r + F(l−1)
i Θ

(l−1)
0 , (10.6)

where Nr(vi) denotes the set of neighbors that connect to node vi through the
relation r. It can be defined as:

N(vi) = {v j|(v j, r, vi) ∈ E}.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

10.7 Graph Neural Networks on Knowledge Graphs 217

In Eq. (10.6), the parametersΘ(l−1)
r are shared by the edges with the same rela-

tion r ∈ R. Similar ideas can be also found in (Hamaguchi et al., 2017). Note
that the Entity-GCN described in Section 10.5.2 is inspired by the graph filter
in Eq. (10.6). In (Shang et al., 2019a), instead of learning different transforma-
tion parameters for different relations, a scalar score is learned to capture the
importance for each relation. It leads to the following graph filtering operation:

F(l)
i =

∑
r∈R

∑
v j∈Nr(vi)

1
|Nr(vi)|

α(l)
r F(l−1)

j Θ(l−1) + F(l−1)
i Θ

(l−1)
0 , (10.7)

where α(l)
r is the importance score to be learned for the relation r.

To reduce the parameters involved in Eq. (10.6), relation embeddings are
learned for different relations in (Vashishth et al., 2019). Specifically, the rela-
tion embeddings for all relations in R after l−1 layer can be denoted as Z(l−1)

with Z(l−1)
r the embedding for relation r. The relation embeddings can be up-

dated for the l-th layer as:

Z(l) = Z(l−1)Θ
(l−1)
rel ,

where Θ(l−1)
rel are the parameters to be learned. We use N(vi) to denote the set

of neighbors of node vi, which contains nodes that connect to vi with different
relations. Hence, we use (v j, r) to indicate a neighbor of vi inN(vi), where v j is
the node connecting with vi through the relation r. Furthermore, in (Vashishth
et al., 2019), the reverse edge of any edge in E is also treated as an edge. In
other words, if (vi, r, v j) ∈ E, (v j, r̂, vi) is also considered as an edge with r̂
as the reverse relation of r. Note that, for convenience, we abuse the notation
E and R a little bit to denote the augmented edge set and relation set. The
relations now have directions and we use dir(r) to denote the direction of a
relation r. Specifically, dir(r) = 1 for all the original relations, while dir(r̂) =
−1 for all the reverse relations. The filtering operation is then designed as:

F(l)
i =

∑
(v j,r)∈N(vi)

ϕ(F(l−1)
j ,Zl−1

r)Θ(l−1)
dir(r), (10.8)

where ϕ(,) denotes non-parameterized operations such as subtraction and mul-
tiplication and Θ(l−1)

dir(r) are parameters shared by all the relations with the same
direction.

10.7.2 Transforming Knowledge Graphs to Simple Graphs

In (Wang et al., 2018c), instead of designing specific graph filtering operations
for knowledge graphs, a simple graph is built to capture the directed relational

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

218 Graph Neural Networks in Natural Language Processing

information in knowledge graphs. Then, existing graph filtering operations can
be naturally applied to the transformed simple graph.

Two scores are proposed to measure the influence of an entity to another
entity through a specific type of relation r as:

fun(r) =
#Source with r
#Edges with r

,

ifun(r) =
#Taget with r
#Edges with r

,

where #Edges with r is the total number of edges with the relation r, #Source with r
denotes the number of unique source entities with relation r and #Target with r
indicates the number of unique target entities with relation r. Then, the overall
influence of the entity vi to the entity v j is defined as:

Ai, j =
∑

(vi,r,v j)∈E
ifun(r) +

∑
(v j,r,vi)∈E

fun(r),

where Ai, j is the i, j-th element for the adjacency matrix A of the generated
simple graph.

10.7.3 Knowledge Graph Completion

Knowledge graph completion, which aims to predict the relation between a
pair of disconnected entities, is an important task as knowledge graphs are
usually incomplete or fast evolving with new entities emerging. Specifically,
the task is to predict whether a given triplet (s, r, t) is a real relation or not.
To achieve this goal, we need to assign a score f (s, r, t) to the triplet (s, r, t)
to measure the probability of the triplet being a real relation. Especially, the
DistMult factorization (Yang et al., 2014) is adopted as the scoring function,
which can be expressed as:

f (s, r, t) = F(L)
s
⊤RrF(L)

t ,

where F(L)
s and F(L)

t are the representations of source node s and target node t,
respectively. They are learned by graph neural networks after L filtering layers;
Rr is a diagonal matrix corresponding to the relation r to be learned during
training. The model can be trained using negative sampling with cross-entropy
loss. In particular, for each observed edge sample e ∈ E, k negative samples
are generated by randomly replacing either its subject or object with another
entity. With the observed samples and the negative samples, the cross-entropy
loss to be optimized can be expressed as:

L = − 1
(1+k)|E|

∑
(s,r,o,y)∈T y logσ (f (s, r, o))+(1 − y) log (1 − σ (f (s, r, o))),

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

10.8 Conclusion 219

where T denotes the set of the positive samples observed in E and randomly
generated negative samples and y is an indicator that is set to 1 for the observed
samples and 0 for the negative samples.

10.8 Conclusion

In this chapter, we introduce how graph neural networks can be applied to
natural language processing. We present representative tasks in natural lan-
guage processing, including semantic role labelling, relation extraction, ques-
tion answering, and graph to sequence learning, and describe how graph neu-
ral networks can be employed to advance their corresponding models’ per-
formance. We also discuss knowledge graphs, which are widely used in many
NLP tasks and present how graph neural networks can be generalized to knowl-
edge graphs.

10.9 Further Reading

Besides graph neural networks, the Graph-LSTM algorithms we introduced in
Section 9.3 have also been adopted to advance the relation extraction tasks (Miwa
and Bansal, 2016; Song et al., 2018c). In addition, graph neural networks
have been applied to many other NLP tasks such as abusive language detec-
tion (Mishra et al., 2019), neural summarization (Fernandes et al., 2018), and
text classification (Yao et al., 2019). The Transformer (Vaswani et al., 2017)
has been widely adopted to deal with sequences in natural language process-
ing. The pre-trained model BERT (Devlin et al., 2018), which is built upon
transformer, has advanced many tasks in NLP. When applying to a given se-
quence, the transformer can be regarded as a special graph neural network. It is
applied to the graph induced from the input sequence. In detail, the sequence
can be regarded as a fully connected graph, where elements in the sequence
are treated as the nodes. Then a single self-attention layer in the transformer is
equivalent to the GAT-Filter layer (see Section 5.3.2 for details of GAT-Filter).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

11
Graph Neural Networks in Computer Vision

11.1 Introduction

Graph-structured data widely exists in numerous tasks in the area of computer
vision. In the task of visual question answering, where a question is required to
be answered based on content in a given image, graphs can be utilized to model
the relations among the objects in the image. In the task of skeleton-based
recognition, where the goal is to predict human action based on the skele-
ton dynamics, the skeletons can be represented as graphs. In image classifica-
tion, different categories are related to each other through knowledge graphs
or category co-occurrence graphs (Wang et al., 2018b; Chen et al., 2019c).
Furthermore, point cloud, which is a type of irregular data structure represent-
ing shapes and objects, can also be denoted as graphs. Therefore, graph neural
networks can be naturally utilized to extract patterns from these graphs to facil-
itate the corresponding computer vision tasks. This chapter demonstrates how
graph neural networks can be adapted to the aforementioned computer vision
tasks with representative algorithms.

11.2 Visual Question Answering

Given an image and a question described in natural language, the task of visual
question answering (VQA) is to answer the question based on the information
provided in the image. An illustrative example of the VQA task is shown in
Figure 11.1, where the task is to figure out the color of the fruit at the left of
the image. To perform the VQA task properly, it is necessary to understand the
question and the image, which requires techniques from both natural language
processing and computer vision. Typically, Convolutional Neural Networks
(CNNs) are adopted to learn the image representation. Then, it is combined

220

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

11.2 Visual Question Answering 221

Image 𝐼:

Question q:	What is the color of fruit at the left?

Figure 11.1 An illustrative example of the VQA task

with the representation of the question to perform the VQA task. As illustrated
in Figure 11.1, the relations between objects in the image can also be important
to answer the question correctly. Better capturing the semantic and spatial rela-
tions between the objects can potentially facilitate the VQA task. For example,
to answer the question q in Figure 11.1 properly, the relative locations between
the fruits are necessary. To denote the objects’ interactions explicitly, graphs
are adopted to model the connections between objects. Graph neural networks
are then adopted to learn the representations for these graphs generated from
images (Teney et al., 2017; Norcliffe-Brown et al., 2018). Specifically, some
works assume that the graph is given for each image (Teney et al., 2017), while
others incorporate the graph generation process as a part of the proposed mod-
els (Norcliffe-Brown et al., 2018). In this section, we introduce the two models
proposed in (Teney et al., 2017) and (Norcliffe-Brown et al., 2018) as examples
to show how graph neural networks can be adopted in the VQA task.

The task of VQA is modeled as a classification problem, where each class
corresponds to one of the most common answers in the training set. Formally,
each sample of this classification problem can be denoted as (q, I), where q
is the question, and I is the image. To tackle this classification problem uti-
lizing the information from the question and the image, their representations
are learned and combined to serve as the input for the prediction layer based
on feedforward network. In (Norcliffe-Brown et al., 2018), the image is trans-
ferred to a graph in an end-to-end manner while training the entire framework.
In (Teney et al., 2017), both the question q and the image I are pre-processed
as graphs and dealt with graph neural networks.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

222 Graph Neural Networks in Computer Vision

11.2.1 Images as Graphs

In (Norcliffe-Brown et al., 2018), the question q is encoded to a representation
q using RNN with GRU. To learn the representation for the image I, a graph
is generated from the image I dependent on the question q, and a graph neural
network model is applied on the generated graph to learn its representation.
Next, we first describe how the graph is generated given the image I and the
question representation q. Then, we introduce the graph neural network model
to learn the graph representation FI . Finally, we briefly describe the prediction
layer, which takes the representations for the question q and the image I as
input.

Given an image I, and a set of n visual features bounded by boxes generated
by an object detector. Each bounding box serves as a node in the generated
graph. An initial representation xi is produced for each node vi by taking the
average of the corresponding convolutional feature maps in the bounding box.
These nodes consist of the node set for the generated graph, denoted as VI .
We then generate the set of edges EI to describe the relations between these
nodes. These edges are constructed based on the pair-wise similarity and the
relevance to the given question q. To combine these two types of information,
for each node, a question-dependent representation is generated as:

ei = h([xi,q]),

where ei is the question-dependent node representation for node vi and h() is a
non-linear function to combine these two types of information. The question-
dependent representations for all nodes can be summarized by a matrix E
where the i-th row is corresponding to the i-th node in the generated graph.
Then the adjacency matrix of the graph is calculated as:

A = EET . (11.1)

However, the adjacency matrix learned by Eq. (11.1) is fully connected, which
is not optimal for both efficiency and the performance of the model. Hence,
to generate a sparse adjacency matrix, only the stronger connections for each
node are kept. Specifically, we only keep the top m values of each row and set
other values to 0, where m is a hyper-parameter. The graph generated for image
I is denoted as GI .

After obtaining the question-dependent graph GI for the objects detected in
the image, the Mo-Filter introduced in Section 5.3.2 is adapted to generate the
node representations. The operation for a node vi can be formulated as:

F(l)
i =

∑
v j∈N(vi)

w(u(i, j))F(l−1)
j αi, j, (11.2)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

11.2 Visual Question Answering 223

where N(vi) denotes the set of neighbors for node vi, w(·) is a learnable Gaus-
sian kernel, αi, j = softmax(Ai)[j] indicates the strength of connectivity be-
tween nodes vi and v j, and u(i, j) is a pseudo-coordinate function. This pseudo-
coordinate function u(i, j) returns a polar coordinate vector (ρ, θ), which de-
scribes the relative spatial positions of the centers of the bounding boxes cor-
responding to nodes vi and v j. After applying L consecutive graph filtering
layers as described in Eq. (11.2), the final representation for each node vi is
obtained as F(L)

i . In (Norcliffe-Brown et al., 2018), K different Gaussian ker-
nels are used and the output representations of the K kernels are combined
as:

Fi = ∥
K
k=1F(L)

i|k Θk,

where F(L)
i|k is the output from the k-th kernel and Θk is a learnable linear trans-

formation. The final representations for all the nodes in the graph can be sum-
marized in a matrix F where each row corresponds to a node.

Once these final node representations are obtained, a max-pooling layer is
applied to generate the representation FI for the graph GI . The graph represen-
tation FI and the question representation q are combined through the element-
wise product to generate the task representation, which is then input into the
feedforward network-based prediction layer to perform the classification.

11.2.2 Images and Questions as Graphs

In (Teney et al., 2017), both the question q and the image I are pre-processed
as graphs. The question q is modeled as a syntactic dependency tree. In the
tree, each word in the sentence is a node, and the dependency relations be-
tween words are edges. We denote the graph generated for a question q as
Gq = {Vq,Eq,Rq}, where Rq is the set of possible dependency relations. Mean-
while, the image I is pre-processed as a fully connected graph. In the graph,
the objects in the image I are extracted as nodes, and they are pair-wisely con-
nected. We denote the graph generated for the image I as GI = {VI ,EI}. Each
object (or node) vi ∈ VI , is associated with its visual features xi while each
edge (vi, v j) ∈ EI between nodes vi and v j is associated with a vector xi j that
encodes the relative spatial relations between vi and v j.

Both graphs are processed with graph neural networks to generate node rep-
resentations, which are later combined to generate a representation for the pair
(q, I). In (Teney et al., 2017), a slightly modified version of GGNN-Filter as in-
troduced in Section 5.3.2, is utilized to process these two graphs. The modified

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

224 Graph Neural Networks in Computer Vision

GGNN-Filter can be described as:

mi =
∑

v j∈N(vi)

x′i j ⊙ x′j, (11.3)

h(t)
i = GRU([mi, x′i],h

(t−1)
i); t = 1, . . .T, (11.4)

where x′j and x′i j are the features for node v j and edge (vi, v j), respectively. For
the question graph Gq, x′j and x′i j are randomly initialized. In detail, node fea-
tures are word-specific, i.e., each word is initialized with a representation while
edge features are relation specific, i.e., edges with the same relation r ∈ Rq

share the same features. For the image graph GI , x′i and x′i j are transformed us-
ing feedforward networks from the associated features xi and xi j, respectively.
In Eq. (11.4), the GRU update unit (with h(0)

0 = 0) runs T times and finally ob-
tains the final representation h(T)

i for node vi. Note that, in (Teney et al., 2017),
a single layer of graph filter as described in Eq. (11.3) and Eq. (11.4) is utilized
to process the graphs. In other words, there are a single aggregation step and T
GRU update steps. We denote the final node representations learned from the
graph filtering as h(T,q)

i and h(T,I)
j for node vi ∈ Vq in the question graph Gq and

v j ∈ VI in the image graph GI , respectively. These node representations from
the two graphs are combined as:

hi, j = αi, j · [h(T,q)
i ,h(T,I)

j], i = 1, . . . |Vq|; j = 1, . . . , |VI |, (11.5)

h′i = f1

 |VI |∑
j=1

hi, j

 , (11.6)

h(q,I) = f2

 |Vq |∑
i=1

h′i

 , (11.7)

where αi, j in Eq. (11.5), which is learned using the raw features x′, can be
regarded as a relevance measure between a question node and an image node.
Specifically, it can be modeled as:

αi, j = σ

 f3

 x
′Q
i

∥x
′Q
i ∥
⊙

x′Ij
∥x′Ij ∥

 ,
where we use the superscripts Q and I to differentiate the features for nodes
from the question graph and the image graph respectively, ⊙ is the Hadar-
mard product, f3() is modeled as a linear transformation and σ() is the sigmoid
function. hi, j is a mixed representation of a node from the question graph and
a node from the image graph. These representations hi, j are hierarchically ag-
gregated to generate the representation h(q,I) for the pair (q, I) in Eq. (11.6) and

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

11.3 Skeleton-based Action Recognition 225

Eq. (11.7), where f1() and f2() are feedforward neural networks. The represen-
tation can be utilized to perform the classification on the candidate sets.

11.3 Skeleton-based Action Recognition

Human action recognition is an active research area, which plays a vital role
in video understanding. Human body skeleton dynamics can capture important
information about human actions, which have been often leveraged for action
recognition. The skeleton dynamics can be naturally modeled as a time series
of human joint locations and interactions between them. Especially, the spatial
relations between the joints can be modeled as a graph with the joints as the
nodes and bones as edges connecting them. Then, the skeleton dynamics can
be represented as a sequence of graphs which share the same spatial structure
while the node attributes (or location coordinates of the joints) of the graph in
the sequence are different. Graph neural networks have been adopted to learn
better representations of the skeleton dynamics and thus improve the perfor-
mance of skeleton-based action recognition (Yan et al., 2018; Li et al., 2018a;
Shi et al., 2019a; Si et al., 2018; Wen et al., 2019; Li et al., 2019c; Si et al.,
2019). In this section, we take the framework proposed in (Yan et al., 2018)
as one example to demonstrate how graph neural networks can be applied to
the skeleton-based action recognition task. It is the first to explore graph neural
networks for skeleton-based action recognition.

As shown in Figure 11.2, a sequence of skeletons is represented as a spatial-
temporal graph G = {V,E}, where V denotes the set of nodes and E is the
set of edges, respectively. The node set V consists of all the joints in the
skeleton sequence, i.e., V = {vti|t = 1, . . . ,T ; i = 1, . . . ,N} where N is the
number of joints in a single skeleton graph, and T is the number of skele-
tons in the sequence. The edge set E consists of two types of edges: 1) the
intra-skeleton edges within the same skeleton, which are defined based on the
bones between the joints; and 2) the inter- skeleton edges, which connect the
same joints in consecutive skeletons in the sequence. For the illustrative exam-
ple in Figure 11.2, the intra-skeleton edges are highlighted by green while the
inter-skeleton edges are shown in blue. The skeleton-based action recognition
task can then be converted into a graph classification task where the classes
are the actions to predict, such as running. To perform this graph classifica-
tion task, a graph filtering operation is proposed for the spatial-temporal graph
to learn node representations. After the node representations are learned, the
graph representation is obtained by applying a global pooling layer, such as
max-pooling. The graph representation is then utilized as the input to the feed-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

226 Graph Neural Networks in Computer Vision

Figure 11.2 An illustrative example of the spatial-temporal skeleton graph

forward networks-based prediction layer. Next, we present the details of the
proposed graph filter for the spatial-temporal graph.

The proposed graph filter is adapted from the GCN-Filter (see Section 5.3.2
for details of GCN-Filter), which aggregates information from neighboring
nodes in the spatial-temporal graph. Specifically, for a node vti in the t-th skele-
ton, its spatial neighborsN(vti) consist of its 1-hop neighbors in the t-th skele-
ton graph and the node vti itself. Then its spatial temporal neighbors NT (vti)
on the spatial-temporal graph G can be defined as:

NT (vti) = {vτ j| vt j ∈ N(vti) and |τ − t| ≤ Γ}. (11.8)

The constraint |τ − t| ≤ Γ in Eq. (11.8) indicates that the temporal distance
between these two skeleton graphs where the nodes vτ j and vt j locate should
be smaller than Γ. Hence, the spatial temporal neighbors NT (vti) of node vti

include not only its spatial neighbors from the same skeleton but also “tem-
poral neighbors” from close skeletons in the sequence. Furthermore, instead
of treating the neighbors equally, neighbors are split into different subsets and
different transformation matrices are utilized for their transformation. In partic-
ular, the spatial neighborsN(vti) of a node vti in a skeleton graph are divided to

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

11.4 Image Classification 227

three subsets as follows: 1) the root node itself (i.e., node vti); 2) the neighbor-
ing nodes that are closer to the gravity center of skeleton than the root node;
and 3) all other nodes. The neighboring nodes of node vti in other skeleton
graphs can be divided similarly; hence, the neighboring set NT (vti) can be di-
vided into 3(2Γ + 1) sets. For convenience, we use s(vτ j) to indicate the subset
a given node vτ j ∈ N

T (vti) belongs to. Then, the graph filtering process for a
given node vti can be described as:

F(l)
ti =

∑
vτ j∈N

T (vti)

1
#s(vτ j)

· F(l−1)
τ j Θ

(l−1)
s(vτ j)

, (11.9)

where F(l)
ti denotes node representations of node vti after l−th layer, and F(l−1)

τ j
denotes node representations of node vτ j after (l − 1)−th layer. #s(vτ j) denotes
the number of neighbors that are in the subset vτ j and the transformation pa-
rameter Θ(l−1)

s(vτ j)
is shared by all the neighbors belonging to the subset s(vτ j).

The node representations are learned by stacking L graph filtering layers as
Eq. (11.9) with activation layers. Then, the graph representation is obtained by
applying a global pooling layer to these node representations. Note that in the
framework we introduced above, the relations between the joints in the skele-
ton are naturally defined through the bones. Hence, only spatially close joints
are connected to each other. However, it is possible that some distant joints
are also related especially when doing some specific actions. For example, two
hands are highly related to each other when doing the action “clapping hands”.
Thus, it is important to also encode relations between distant joints. In (Shi
et al., 2019b,a; Li et al., 2019c), the graphs between the joints are learned to-
gether with the parameters of the model.

11.4 Image Classification

Image classification aims to classify an image into certain categories. Graph
neural networks have been adopted to advance image classification, especially
under zero-shot, few-shot and multi-label settings. In this section, we discuss
GNN based image classification under these three settings with representative
algorithms. As shown in Figure 3.11 in Section 3.3.5, a CNN-based image
classifier usually consists of two parts: 1) feature extraction, which is built
with convolutional and pooling layers; and 2) the classification component,
which is typically modeled as a fully connected layer. Specifically, this fully
connected layer (without considering the softmax layer) can be represented
as a matrix W ∈ Rd×c, where d is the dimension of the extracted features,
and c is the number of categories in the task. The i-th row of W denoted as

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

228 Graph Neural Networks in Computer Vision

wi is corresponding to the i-th category, which indicates how likely a given
sample is classified to the i-th category. In this section, we loosely call wi as
the “classifier” of the i-th category.

11.4.1 Zero-shot Image Classification

In the traditional setting of the image classification task in computer vision,
abundant images of each category are assumed to be available for training the
classifiers for these categories. These learned classifiers can only recognize the
images from the categories they are trained with. To recognize images from a
new category, thousands of images of this category are required, and their cor-
responding classifiers must be retrained together with newly collected images.
The task of zero-shot image classification is to learn a classifier for a new cate-
gory without any training images but only based on information about the cate-
gory, such as its description or its relations with other categories. Graph neural
networks are adopted in (Wang et al., 2018b) to learn classifiers for categories
without any training images by propagating information from other categories
through a knowledge graph describing the relations between categories. Next,
we first formally describe the setting of the zero-shot image classification task
and then present how graph neural networks are adopted to tackle this problem.

In the zero-shot image classification setting, we are given a set of n cate-
gories, among which the first m of them have sufficient training images while
the remaining n −m categories are with no images. Each category ci is associ-
ated with a short description, which can be projected to a semantic embedding
xi. Furthermore, there is a knowledge graph (e.g., WordNet (Miller, 1998))
G = {V,E} describing the relations between these categories, where the cate-
gories are the nodes. In the introduction of this section, we use wi to loosely
denote a “classifier” of a category ci. For a linear classifier such as logistic
regression for a given category ci, it can be also represented by its parameters
wi ∈ R

d, where d is the dimension of the features of the input image. Given
an image, its features can be extracted using some pre-trained Convolutional
Neural Networks. For those m categories with sufficient training samples, their
corresponding classifier can be learned from these training samples. The goal
of the zero-shot image classification task is to learn classifiers for those n − m
categories without any images by leveraging their semantic embeddings and/or
the given knowledge graph G.

A straightforward way to predict the classifiers is to adopt a neural net-
work that takes the semantic embedding of a category as input and produces
its corresponding classifier as output. However, in practice, the number of cate-
gories with sufficient training samples is generally too small (e.g., in the order

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

11.4 Image Classification 229

of hundreds) to train the neural network. Hence, instead of deep neural net-
works, the graph neural network model is adopted to predict the classifiers.
The graph neural network model is applied to the knowledge graph with the
semantic embeddings of categories as input, and its output is the correspond-
ing classifiers of these categories. In (Wang et al., 2018b), GCN-Filter (see
Section 5.3.2 for details on GCN-Filter) is adopted as the graph filtering oper-
ation, and L graph filtering layers are stacked to refine the features (with the
semantic embeddings as the initial features) before finally obtaining the clas-
sifiers. Specifically, the task can be modeled as a regression problem, where
the classifiers {w1, . . . ,wm} for the first m categories are served as the ground
truth. In (Wang et al., 2018b), the number of layers L is set to a relatively large
number (e.g., 6) such that distant information can be propagated through the
knowledge graph. However, it is empirically shown that increasing the number
of layers of graph neural networks may hurt the performance (Kampffmeyer
et al., 2019). Hence, to propagate distant information without reducing the per-
formance, a dense graph is constructed from the given knowledge graph. Any
given node is connected to all its ancestors in the knowledge graph. Two graph
filtering layers are applied based on the constructed dense graph. In the first
layer, information is only aggregated from descendants to ancestors, while in
the second layer, information flows from ancestors to descendants.

11.4.2 Few-shot Image Classification

In zero-shot learning, we aim to learn classifiers for unseen categories without
any training samples. In the setting of few-shot learning image classification,
we are given a set of n categories, among which the first m categories have
sufficient training images while the remaining n−m categories are with only k
labeled images, where k is usually a very small number such as 3. Specifically,
when k = 0, it can be treated as the the zero-shot image classification task. In
this section, we specifically focus on the case where k > 0.

In few-shot image classification, as all categories have labeled images (ei-
ther sufficient or not), classifiers can be learned for all categories. We denote
the classifier learned for the i-th category as wi. The classifiers {w1, . . . ,wm}

learned for those m categories with sufficient labeled training images are good
and can be employed to perform predictions on unseen samples. However, the
classifiers {wm+1, . . . ,wn} for the n − m categories with only k images may
not be sufficient to perform reasonable predictions. Hence, the goal is to learn
better classifiers for these n − m categories.

A similar approach as that introduced in Section 11.4.1 can be used to refine
the classifiers {wm+1, . . . ,wn}. Specifically, these learned classifiers {wm+1, . . . ,wn}

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

230 Graph Neural Networks in Computer Vision

can be used as the input of a GNN model to produce the refined classifiers. The
GNN model can be trained on those categories with sufficient labels (Gidaris
and Komodakis, 2019). Especially, to mimic the process of refining less-well
trained classifiers to generate well-trained classifiers, for each of the categories
with sufficient training samples, we can sample k training samples to form a
“fake” training set, which simulates the setting of those categories with only k
labeled samples. Then, a set of classifiers {ŵ1, . . . , ŵm} can be learned from the
“fake” training sets. These “fake” classifiers {ŵ1, . . . , ŵm} and the ones learned
with sufficient training samples {w1, . . . ,wm} can be used as training data to
train the GNN model. Specifically, the GNN model is similar to the one in-
troduced in Section 11.4.1, where the difference is that, instead of using word
embedding as input, the model now takes the “fake” classifiers as input. After
training, the GNN model can be utilized to refine the classifiers {wm+1, . . . ,wn}

for those categories with k training samples. As mentioned in Section 11.4.1,
knowledge graphs describing the relations between the categories can be used
as the graphs, which the GNN model is applied to. In (Gidaris and Komodakis,
2019), the graph between the categories is built upon the similarity between
the classifiers before refining.

11.4.3 Multi-label Image Classification

Given an image, the task of multi-label image classification is to predict a set
of objects that are presented in the given image. A simple way is to treat this
problem as a set of binary classification problems. Each binary classifier pre-
dicts whether a certain object is presented in the image or not. However, in the
physical world, certain objects frequently occur together. For example, the ten-
nis ball and the tennis racket frequently co-occur. Capturing the dependencies
between the objects is key to the success of the multi-label image classifica-
tion model. In (Chen et al., 2019c), a graph describing the relations between
the objects is learned from the training set, and a graph neural network model
is applied to this graph to learn inter-dependent classifiers. These classifiers
predict whether objects are presented in a given image or not. Similar to that
in Section 11.4.1, the classifiers are denoted by vectors wi.

Given an image I, the goal of multi-label image classification is to predict
which objects from a candidate set C = {c1, . . . , cK} are presented in the given
image. Hence, a set of K binary classifiers need to be learned to perform the
task, which can be denoted as {w1, . . . ,wK}, with wi ∈ R

d. The dimension d
of the classifiers is defined by the image representation xI ∈ R

d, which can
be extracted by some pre-trained convolutional neural networks. To learn the
object classifiers, which can capture the inter-dependencies between the ob-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

11.5 Point Cloud Learning 231

jects, a graph neural network model is applied to a graph G which describes
the relations between the objects. In (Chen et al., 2019c), the graph G consists
of the objects as nodes and the connections between them are built accord-
ing to their co-occurrence in the training data. Specifically, we first count the
co-occurrence (i.e., appearing in the same image) of any pair of objects in the
training set and get a matrix M ∈ RK×K where Mi, j denotes the count of co-
occurrence of i-th and j-th objects. Then, each row of this matrix is normalized
as:

Pi =Mi/Ni,

where Pi, Mi denote the i-th row of matrices P, M respectively and Ni is the oc-
currence of the i-th object. To sparsify the matrix P, we further use a threshold
τ to filter the noisy edges as:

Ai, j =

{
0, if Pi, j < τ;
1, if Pi, j ≥ τ

The matrix A can be regarded as the adjacency matrix of the built graph.
Once the graph is constructed, the graph neural network model can be ap-
plied to learn the classifiers for different objects. Specifically, the classifiers
for the objects are the output of the graph neural network model, where the
input is the word embeddings for these objects. After obtaining the classifiers
{w1, . . . ,wK}, the classification can be done by mapping the image represen-
tation xI to a score wT

i xI that can be utilized for binary classification for each
object ci. Note that the entire process is end-to-end with the image as input and
the prediction as output.

11.5 Point Cloud Learning

Point clouds provide flexible geometric representations for 3-D shapes and ob-
jects. More formally, a point cloud consists of a set of points {v1, . . . , vn} where
each point contains 3-D geometric coordinates vi = (xi, yi, zi) representing ge-
ometric locations. A point cloud can usually represent a 3-D object or shape.
Like graphs, the point clouds are irregular as the points in the set are not or-
dered and not well-structured. Hence, it is not straightforward to apply classical
deep learning techniques such as CNNs for point cloud learning. The topolog-
ical information in the cloud points is implicitly represented by the distance
between the points. To capture the local topology in a cloud point, a graph is
built based on the distance between the set of points in the point cloud (Wang
et al., 2019k). Specifically, k-nearest neighbors of each point vi are considered

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

232 Graph Neural Networks in Computer Vision

as its neighbors in the built graph. Then, graph filtering operations are utilized
to learn the representations for the points, which can be utilized for down-
stream tasks. Similar to graphs, there are two types of tasks on point clouds –
one is point-focused task such as segmentation, which aims to assign a label
for each point and the other is cloud-focused task such as classification, which
is to assign a label for the entire point cloud. For the cloud-focused task, pool-
ing methods are required to learn a representation from the point representa-
tions for the entire point cloud. Next, we describe the graph filtering operation
introduced in (Wang et al., 2019k). For a single point vi, the process can be
expressed as:

F(l)
i = AGGREGATE

({
hΘ(l−1) (F(l−1)

i ,F(l−1)
j) | v j ∈ N

(l−1)(vi)
})
, (11.10)

where AGGREGATE() is an aggregation function such as summation or max-
imum as introduced in the GraphSAGE-Filter (see Section 5.3.2 for details
of GraphSAGE-Filter), the function hΘ(l−1) () parameterized by Θ(l) is to calcu-
late the edge information to be aggregated. Various hΘ(l−1) () functions can be
adopted and some examples are listed below:

hΘ(l−1) (F(l−1)
i ,F(l−1)

j) = α(F(l−1)
j Θ(l−1)), (11.11)

hΘ(l−1) (F(l−1)
i ,F(l−1)

j) = α
((

F(l−1)
j − F(l−1)

i

)
Θ(l−1)

)
, (11.12)

where α() denotes a non-linear activation function. Note that in Eq. (11.10),
N (l−1)(vi) denotes the set of neighbors of vi, which is the k-nearest neighbors
(including node vi itself) calculated based on the output features F(l−1) from
the previous layer. Specifically, N (0)(vi) is calculated based on F(0), which are
the associated coordinates of the points. Hence, during training, the graph is
evolving as the node features are updated.

11.6 Conclusion

This chapter introduces graph neural network models in various computer vi-
sion tasks, including visual question answering, skeleton-based human action
recognition, zero-shot image recognition, few-shot image recognition, multi-
label image recognition, and point cloud learning. For each task, we briefly
introduce the task and describe why and how graph neural networks can im-
prove its performance with representative algorithms.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

11.7 Further Reading 233

11.7 Further Reading

In addition to the computer vision tasks we introduced in this chapter, graph
neural networks have been adopted to enhance many other tasks in computer
vision. In (Ling et al., 2019), it is utilized to annotate objects from given im-
ages. Graph neural networks are adopted to deal with scene graphs and im-
prove the performance of many tasks related to scene graphs, including scene
graph generation (Chen et al., 2019a; Khademi and Schulte, 2020), and scene
graph based image captioning (Yang et al., 2019).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

12
Graph Neural Networks in Data Mining

12.1 Introduction

Data mining aims to extract patterns and knowledge from large amounts of
data (Han et al., 2011). Data from many real-world applications can be inher-
ently represented as graphs. In the Web, relations among social media users
such as friendships in Facebook and following relations in Twitter can be de-
noted as social graphs, and the historical interactions between e-commerce
users and items can be modeled as a bipartite graph, with the users and items
as the two sets of nodes and their interactions as edges. Roads or road sec-
tions in urban areas are often dependent on each other due to spatial relations
between them. These spatial relations can be represented by a traffic network
where nodes are roads or road sections, and edges indicate the spatial rela-
tions. Therefore, graph neural networks have been naturally applied to facili-
tate various tasks of data mining. In the chapter, we illustrate how GNNs can
be adopted for representative data mining tasks, including web data mining,
urban data mining, and cybersecurity data mining.

12.2 Web Data Mining

Numerous Web-based applications, such as social media and e-commerce,
have produced a massive volume of data. Web data mining is the application
of data mining techniques to discover patterns from such data. This section
demonstrates how GNNs advance two representative tasks of Web data min-
ing, i.e., social network analysis and recommender systems.

234

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

12.2 Web Data Mining 235

12.2.1 Social Network Analysis

Social networks, which characterize relationships and/or interactions between
users, are ubiquitous in the Web, especially social media. Social networks can
be naturally modeled as graphs where users in the networks are the nodes,
and the relationships and/or interactions are the edges. Graph neural networks
have been adopted to facilitate various tasks on social networks such as social
influence prediction (Qiu et al., 2018a), political perspective detection (Li and
Goldwasser, 2019), and social representation learning (Wang et al., 2019a).
Next, we detail some of these tasks.

Social Influence Prediction
In social networks, a person’s emotions, opinions, behaviors, and decisions are
affected by others. This phenomenon, which is usually referred to as social in-
fluence, is widely observed in various physical and/or online social networks.
Investigating social influence is important for optimizing advertisement strate-
gies and performing personalized recommendations. In (Qiu et al., 2018a),
graph neural networks are adopted to predict local social influence for users in
social networks. More specifically, given the local neighborhood of a user and
the actions of users in the neighborhood, the goal is to predict whether the user
will take the actions in the future or not. For example, in the Twitter platform,
the prediction task can be whether a user would retweet posts (the action) on
a certain topic given the action status (whether retweet or not) of other closed
users (local neighborhood).

The relations between the users in the social network can be modeled as
a graph G = {V,E}, where V denotes the set of users in the social network
and E denotes the relations between the users. For a node vi ∈ V, its local
neighborhood is defined as its r-ego network Gr

vi
(Qiu et al., 2018a), which is

a subgraph of G containing all nodes that are within r-hop away from the node
vi. Formally, the node set Vr

vi
and the edge set Er

vi
for the r-ego network Gr

vi

can be defined as:

Vr
vi
=

{
v j ∈ V | dis(vi, v j) ≤ r

}
,

Er
vi
=

{
(v j, vk) ∈ E | v j, vk ∈ V

r
vi

}
,

where dis(vi, v j) denotes the length of the shortest path between nodes vi and v j.
Furthermore, for each node v j ∈ V

r
vi
/{vi}, there is an associated binary action

state s j ∈ {0, 1}. For example, in the case of Twitter, the action state s j = 1 if the
user v j retweeted posts on a certain topic, otherwise s j = 0. The action statuses
for all nodes in v j ∈ V

r
vi
/{vi} can be summarized as Sr

vi
=

{
s j | v j ∈ V

r
vi
/{vi}

}
.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

236 Graph Neural Networks in Data Mining

The goal of social influence prediction is to predict the action status of node vi

given Gr
vi

and Sr
vi

, which is modeled as a binary classification problem.
To predict the action status si for node vi, graph neural network models are

applied to the ego-network to learn the node representation for node vi, which
is then utilized to perform the classification. Specifically, the GCN-Filter and
the GAT-Filter (see Section 5.3.2 for details on GCN-Filter and GAT-Filter)
are adopted as graph filters to build the graph neural networks in (Qiu et al.,
2018a). The following features shown in Eq. (12.1) are utilized as the initial
input for the graph neural network models.

F(0)
j = [x j, e j, s j, ind j], v j ∈ V

r
vi
. (12.1)

In Eq. (12.1), x j denotes the pre-trained embedding for node v j learned by
methods such as DeepWalk or LINE (see Section 4.2.1 for details on Deep-
Walk and LINE) over graph G. The instance normalization trick, which nor-
malizes the embeddings for nodes in Vr

vi
, is adopted by (Qiu et al., 2018a) to

improve the performance of the model. The vector e j contains other node fea-
tures such as structural features, content features, and demographic features if
available. For node v j, s j is initialized to be 0 as its action status is unknown.
The last element ind j ∈ {0, 1} is a binary variable indicating whether a node v j

is the ego user, i.e., ind j = 1 only if v j = vi, otherwise 0.

Social Representation Learning
With the rapid development of social media such as Facebook, more and more
services have been provided to users in social networks. For example, users
can express their preferences for various movies, sports, and books on Face-
book. The availability of these different types of social network services leads
to different categories of user behaviors. Users may have similar preferences
in one category of behaviors while they have quite different preferences in
other behaviors. For example, two users may like the same kind of movies,
but they like very different types of sports. To capture users’ preference sim-
ilarities in different behaviors, multiple vectors are utilized to represent each
user where each vector corresponds to a specific category of behaviors (Wang
et al., 2019a). In detail, for each user, these representations for different be-
haviors are conditioned on a general representation for this user. To learn these
user representations, a graph neural network model is adapted to capture vari-
ous preference similarities between users in different behaviours (Wang et al.,
2019a). Next, we first formally describe the problem setting and then introduce
the graph neural network model developed to learn conditional representations.

A social network can be modeled as a graph G = {V,E}, where V =

{v1, . . . , vN} represents the set of nodes (social users) and E denotes the edges

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

12.2 Web Data Mining 237

(social relations) connecting them. These relations between users can also be
represented by the adjacency matrix of the graph A. Furthermore, the users
also have interactions with items such as movies, books and sports, which are
organized to different categories. Specifically, the set of items for a category c
(e.g. books) is denoted as Ic and the interactions between the users and these
items are described by an interaction matrix Rc, where Rc

i, j = 1 only when the
user vi has interacted with the j-th item in the category c, otherwise 0. The
goal of conditional representation learning is to learn a set of representations
for each user v j, where each conditional representation for a specific category c
can capture the social structure information in A and also the preference in the
category c described in Rc. The representation learning framework is designed
based on the MPNN framework as introduced in Section 5.3.2. Its message
function M() and the update function U() (for the l-th layer) are described
as follows. The message function M() in the MPNN framework generates a
message to pass to the center node vi from its neighbor v j. To capture various
similarities between nodes vi and v j in different categories, the representations
of these nodes are mapped to different categories as:

F(l−1)
j|c = F(l−1)

j ⊙ b(l−1)
c ,

where b(l−1)
c is a learnable binary mask shared by all nodes to map the input

representation F(l−1)
j to the conditional representation F(l−1)

j|c for the category c.
Then, the message from node v j to node vi is generated as:

F(l−1)
v j→vi

= M(F(l−1)
i ,F(l−1)

j) =
C∑

c=1

α(l−1)
i, j|c · F

(l−1)
j|c ,

where C denotes the number of categories and α(l−1)
i, j|c is the attention score

learned as:

e(l−1)
i, j|c = h(l−1)⊤ ReLU

([
F(l−1)

i|c ,F(l−1)
j|c

]
Θ(l−1)

a

)
,

α(l−1)
i, j|c =

exp
{
e(l−1)

i, j|c

}
∑C

c=1 exp
{
e(l−1)

i, j|c

} ,
where h(l−1) and Θ(l−1)

a are parameters to be learned. The attention mechanism
is utilized to ensure that more similar behaviours between users will contribute
more when generating the message. After generating the messages, the repre-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

238 Graph Neural Networks in Data Mining

sentation for node vi is updated with the update function as:

m(l−1)
i =

∑
v j∈N(vi)

F(l−1)
v j→vi

, (12.2)

F(l) = U(F(l−1)
i ,m(l−1)

i) = α
([

F(l−1)
i ,m(l−1)

i

]
Θ(l−1)

u

)
, (12.3)

where Θ(l−1)
u is the parameters for the update function and α() denotes some

activation functions. Note that, after stacking L layers of the above MPNN fil-
tering operations, the final representations FL

i can be obtained, which are then
mapped to the conditional representation FL

i|c. The final conditional represen-
tation FL

i|c is utilized to recover the interaction information Rc, which serves
as the training objective of the framework. Hence, the learned conditional rep-
resentations capture both the social structure information and the user-item
interaction information for a specific category.

12.2.2 Recommender Systems

Recommender systems have been widely applied to many online services such
as e-commerce, video/music streaming services, and social media to alleviate
the problem of information overload. Collaborative filtering (CF) (Goldberg
et al., 1992; Resnick and Varian, 1997; Goldberg et al., 2001), which utilizes
users’ historical behavior data to predict their preferences, is one of the most
important techniques for developing recommender systems. A key assump-
tion of the collaborative filtering technique is that users with similar histori-
cal behaviors have similar preferences. Collaborative filtering approaches usu-
ally encode such information into vector representations of users and items,
which can reconstruct the historical interactions (Koren et al., 2009; Wang
et al., 2019h). When learning these representations, the historical interactions
are usually not explicitly utilized but only served as the ground truth for the
reconstruction. These historical interactions between users and items can be
modeled as a bipartite graph G = {U ∪ V,E}. Specifically, the set of users
can be denoted as U = {u1, . . . , uNu }, the set of items can be indicated as
V = {v1, . . . , vNv }, and the interactions between them can be represented as
E = {e1, . . . , eNe }, where ei = (u(i), v(i)) with u(i) ∈ U and v(i) ∈ V. These in-
teractions can also be described by an interaction matrix M ∈ RNu×Nv , where
the i, j-th element of M indicating the interaction status between the user ui

and item v j. Specifically, Mi, j can be the rating value user ui gave to item v j. It
can also be a binary value with Mi, j = 1 indicating user ui interacted with item
v j. With the bipartite graph, the historical interactions can be explicitly uti-
lized to model the representations for users and items by adopting graph neu-
ral network models (Berg et al., 2017; Ying et al., 2018b; Wang et al., 2019h).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

12.2 Web Data Mining 239

Furthermore, side information about users and items such as social networks
for users and knowledge graphs for items can also be modeled in the form
of graphs. It is also incorporated for learning the representations with graph
neural network models (Wang et al., 2019b,c,g; Fan et al., 2019). Next, we
introduce representative collaborative filtering methods based on graph neural
network models.

Collaborative Filtering
Typically, a collaborative filtering approach can be viewed as an encoder-
decoder model, where the encoder is to encode each user/item into vector rep-
resentations and the decoder is to utilize these representations to reconstruct
the historical interactions. Hence, the decoder is usually modeled as a regres-
sion task (when reconstructing rating) or a binary classification task (when
reconstructing the existence of the interactions). Thus, we mainly introduce
the encoder part designed based on graph neural network models. The spatial
graph filtering operations are adopted to update the representations for users
and items. Specifically, for a given user, its representation is updated utilizing
the information from its neighbors, i.e., the items he/she has interacted with.
Similarly, for a given item, its representation is updated utilizing the infor-
mation from its neighbors, i.e., the users which have interacted with it. Next,
we describe the graph filtering process from the perspective of a given user ui

since the graph filtering process for items is similar. The graph filtering process
(for the l-th layer) can be generally described using the MPNN framework as
introduced in Section 5.3.2 as follows:

m(l−1)
i = AGGREGATE

({
M(u(l−1)

i , v(l−1)
j , e(i, j)) | v j ∈ N(ui)

})
, (12.4)

u(l)
i = U(u(l−1)

i ,m(l−1)
i),

where u(l−1)
i , v(l−1)

j denote the input representations of user ui and item v j for
the l-th layer, e(i, j) is the edge information (for example, rating information if it
is available),N(ui) indicates the neighbors of user ui, i.e., the items he/she has
interacted with and AGGREGATE(), M(), U() are the aggregation function, the
message function and the update function to be designed, respectively. In (Berg
et al., 2017), different aggregation functions are proposed and one example is
summation. The message function is designed to incorporate discrete ratings
information associated with the interaction as below:

M
(
u(l−1)

i , v(l−1)
j

)
=

1√
|N(ui)||N(v j)|

v(l−1)
j Θ

(l−1)
r(ui,v j)

,

where r(ui, v j) denotes the discrete rating (e.g, 1-5) the user ui gave to the item
v j and Θ(l−1)

r(ui,v j)
is shared by all the interactions with this rating. The update

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

240 Graph Neural Networks in Data Mining

function is implemented as:

U(u(l−1)
i ,m(l−1)

i) = ReLU(m(l−1)
i Θ(l−1)

up),

where Θ(l−1)
up is the parameter to be learned.

In (Wang et al., 2019h), summation is adopted as the AGGREGATE() func-
tion and the message function and the update function are implemented as:

M
(
u(l−1)

i , v(l−1)
j

)
=

1√
|N(ui)||N(v j)|

(
v(l−1)

j Θ
(l−1)
1 + (u(l−1)

i Θ
(l−1)
2 ⊙ v(l−1)

j)
)
,

U(u(l−1)
i ,m(l−1)

i) = LeakyReLU
(
u(l−1)

i Θ
(l−1)
3 +m(l−1)

i

)
.

where Θ(l−1)
1 , Θ(l−1)

2 and Θ(l−1)
3 are the parameters to be learned.

Collaborative Filtering with Side Information For Items
Knowledge graphs, which describe the relations between items, are utilized as
another resource of information in addition to the historical interactions. Graph
neural network models have been adopted to incorporate the information en-
coded in knowledge graphs while learning representations for items (Wang
et al., 2019c,b,g). Specifically, a knowledge graph with the set of items V as
entities can be denoted as Gk = {V,Ek,R}, where R denotes the set of rela-
tions in the knowledge graph and each relational edge e ∈ Ek can be denoted
as e = (vi, r, v j) with r ∈ R. For an item vi, its connected items in the knowl-
edge graph provide another resource to aggregate information. To aggregate
the information while differentiating the importance of various relations, atten-
tion mechanism is adopted. Specifically, in (Wang et al., 2019g), the attention
score αir j for a relation (vi, r, v j) are calculated following the idea of knowledge
graph embedding method TransR (Lin et al., 2015) as:

π(vi, r, v j) =
(
v(0)

j Θ
(l−1)
r

)⊤
tanh

(
v(0)

i Θ
(l−1)
r + er

)
,

αir j =
exp(π(vi, r, v j))∑

(r,v j)∈Nk(vi)
exp(π(vi, r, v j))

,

where v(0)
i , er, and Θ(l−1)

r are the entity embedding, relation embedding, and
the transformation matrix learned from TransR (Lin et al., 2015), and Nk(vi)
denotes the neighbors of vi in the knowledge graph Gk. The graph filtering
process to update the representation for an item vi (for the l-th layer) is as:

m(l−1)
i =

∑
(r,v j)∈Nk(vi)

αir jv(l−1)
j ,

v(l)
i = U(v(l−1)

i ,m(l−1)
i) = LeakyReLU([v(l−1)

i ,m(l−1)
i]Θ(l−1)

up), (12.5)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

12.2 Web Data Mining 241

where U() is the update function and Θ(l−1)
up is the parameter to be learned.

The embeddings v(0)
i learned from TransR are served as the input for the first

layer. Note that the entity embeddings, relation embeddings and the transfor-
mation matrix learned from TransR are fixed during the propagation described
by Eq. (12.5). Hence, the attention score αir j is shared in different graph fil-
ter layers. Furthermore, the interactions between users and items are incorpo-
rated into the knowledge graph as a special relation interaction (Wang et al.,
2019g). Specifically, each ei = (u(i), v(i)) ∈ E is transformed to a relational edge
(u(i), r, v(i)) with r = interaction. Hence, both the user representations and the
item representations can be updated utilizing Eq. (12.5).

On the other hand, in (Wang et al., 2019c,b), the attention score is designed
to be personalized for each user. In particular, when considering the impact
from one entity v j on another entity vi, the user we want to recommend items
to should also be considered. For example, when recommending movies to
users, some users may prefer to movies from certain directors while others
might prefer to movies acted by certain actors. Hence, when learning item
embeddings specifically for performing recommending items to a user uk, the
attention score for aggregation can be modeled as:

π(vi, r, v j|uk) = uT
k er,

where uk and er are the user embedding and the relation embedding, respec-
tively. Specifically, this process can be also regarded as inducing a knowledge
graph for each user. Note that, in (Wang et al., 2019c,b), only the knowledge
graph is explicitly utilized for learning representations, while the historical in-
teractions are only served as the ground-truth for the reconstruction. Hence,
the user representation uk is just randomly initialized as that in matrix factor-
ization (Koren et al., 2009).

Collaborative Filtering with Side Information For Users
Social networks, which encode the relations/interactions between the users in
U can serve as another resource of information besides the user-item inter-
action bipartite graph. The social network can be modeled as a graph Gs =

{U,Es}, where U is the set of nodes (the users) and Es is the set of edges
describing the social relations between the users. In (Fan et al., 2019), graph
neural network models have been adopted to learn representations for users
and items utilizing both information. Specifically, the items’ representations
are updated by aggregating information from neighboring nodes (i.e., the users
that have interacted with the item) in the interaction bipartite graphG as similar
to the GNN models with pure collaborative filtering introduced in the previous
sections. For users, the information from the two resources (i.e., the user-item

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

242 Graph Neural Networks in Data Mining

interaction bipartite graph G and the social network Gs) are combined together
to generate the user representations as:

u(l)
i =

[
u(l)

i,I,u
(l)
i,S

]
Θ(l−1)

c ,

where u(l)
i,I denotes the representation for user ui learned by aggregating infor-

mation from the neighboring items in the interaction bipartite graph, and u(l)
i,S

indicates its representation learned by aggregating information from neighbor-
ing users in the social network. Θ(l−1)

c is the parameters to be learned. Specifi-
cally, u(l)

i,S is updated with the parameter Θ(l−1)
S

as:

u(l)
i,S = σ

 ∑
u j∈N

s(ui)

u(l−1)
j Θ

(l−1)
S

 ,
where N s(ui) is the set of neighboring users of user ui in the social network.
Meanwhile, u(l)

i,I is generated with the parameter Θ(l−1)
I

as:

u(l)
i,I = σ

 ∑
v j∈N(ui)

[
v(l−1)

j , er(i, j)

]
Θ

(l−1)
I

 , (12.6)

where N(ui) is the set of items that user ui has interacted with and er(i, j) is the
rating information. In (Fan et al., 2019), the ratings are discrete scores and the
rating information er(i, j) is modeled as embeddings to be learned.

12.3 Urban Data Mining

The development of sensing technologies and computing infrastructures has
enabled us to collect large volumes of data in urban areas such as air quality,
traffic, and human mobility. Mining such urban data provides us unprecedented
opportunities to tackle various challenging problems introduced by urbaniza-
tion, such as traffic congestion and air pollution. Next, we demonstrate how
GNNs can advance urban data mining tasks.

12.3.1 Traffic Prediction

Analyzing and forecasting the dynamic traffic conditions are of great signifi-
cance to the planning and construction of new roads and transportation man-
agement of smart cities in the new era. In traffic study, the traffic flow data
can be usually treated as time series. It consists of traffic flow information
such as traffic speed, volume, and density at multiple time steps. Meanwhile,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

12.3 Urban Data Mining 243

𝐹!
(#$!)

GNN-Filter

Sequence …

…
𝐹&
(#$!) 𝐹'

(#$!)

GNN-Filter GNN-Filter

𝐹!,)
(#$!) 𝐹&,)

(#$!) 𝐹',)
(#$!)

𝐹!
(#) 𝐹&

(#) 𝐹'
(#)

Sequence Sequence

Figure 12.1 A learning layer in a typical framework for traffic prediction

roads or road sections are not independent of each other since there exist spa-
tial relations between them. These spatial relations between roads are typically
represented by a traffic network, where roads or road sections are the nodes,
and spatial relations are encoded by the edges between them. To achieve bet-
ter performance for traffic forecasting, it is desired to capture both the spatial
and temporal information. Graph neural network models are adopted for spa-
tial relations, while temporal information is captured by sequential modeling
methods such as convolutional neural networks, recurrent neural networks, and
transformers (Yu et al., 2017; Guo et al., 2019; Wang et al., 2020a). Next, we
describe how graph neural networks can capture spatial relations and be incor-
porated with sequential modeling methods for both the spatial and temporal
information.

The traffic network can be denoted as a graph G = {V,E}, where V =
{v1, . . . , vN} is the set of nodes (roads or road sections) with N as the number
of nodes in the traffic network, and E is the set of edges describing the spatial
relations between nodes. The connections between the nodes can also be de-
scribed by an adjacency matrix A. The traffic status information such as traffic
speed in the traffic network at a specific time t can be represented at a vector
xt ∈ R

N×d, where the i-th row of xt is corresponding to node vi in the traffic net-
work. The task of traffic forecasting is to predict the traffic status for the next H
time steps given the observations from the previous M time steps. Specifically,
it can be expressed as:

(X̂M+1, . . . , X̂M+H) = f (X1, . . . ,XM), (12.7)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

244 Graph Neural Networks in Data Mining

where f () is the model to be learned, and X̂t denotes the predicted traffic status
at time step t. A typical framework to tackle this problem is first to learn refined
node representations at each time step by capturing both spatial and temporal
information and then utilize node representations to perform predictions for
the future time steps. These representations are refined layer by layer where
each learning layer updates the representations by capturing both spatial and
temporal relations. The l-th learning layer is shown in Figure 12.1, which con-
sists of two components: 1) the spatial graph filtering operation to capture the
spatial relations; and 2) the sequence model to capture the temporal relations.
The spatial graph filtering operation is applied to node representations in each
time step as follows:

F(l)
t,S = GNN-Filter(F(l−1)

t ,A), t = 1, . . . ,M, (12.8)

where F(l−1)
t is the node representations at time step t after the (l − 1)-th learn-

ing layer while F(l)
t,S denotes the node representations after the l-th spatial graph

filtering layer, which will serve as the input for the l-th sequence model. Note
that the GNN-Filter is shared by all time steps. Different graph filtering oper-
ations can be adopted. For example, in (Yu et al., 2017), the GCN-Filter (see
details on GCN-Filter in Section 5.3.2) is adopted while in (Guo et al., 2019;
Wang et al., 2020a), attention mechanism is utilized to enhance the graph filter-
ing operation. The output of the spatial graph filtering operation is a sequence,
i.e.,(F(l)

1,S, . . . ,F
(l)
M,S), which will be fed into a sequence model to capture the

temporal relations as:

F(l)
1 , . . . ,F

(l)
M = Sequence(F(l)

1,S, . . . ,F
(l)
M,S), (12.9)

where the output F(l)
1 , . . . ,F

(l)
M will in turn serve as the input to the next spatial

graph filtering layer. Various sequence modeling methods can be adopted as
the Sequence() function. For example, in (Yu et al., 2017), 1-D convolutional
neural networks are adopted to deal with the temporal information. GRU model
and the transformer are adopted in (Wang et al., 2020a) to capture the temporal
relations. The final representations F(L)

1 , . . . ,F(L)
M are obtained by applying L

learning layers as described above and then utilized to predict the traffic status
in the future. Note that F(0)

1 , . . . ,F(0)
M can be initialized with node information

such as traffic status X1, . . . ,XM .

12.3.2 Air Quality Forecasting

Air pollution has raised public concerns due to its adverse effects on the natural
environment and human health. Hence, it is important to forecast the air qual-
ity, which can provide public guidance for people affected by this issue. The

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

12.4 Cybersecurity Data Mining 245

air quality forecasting problem can be formulated in a spatial-temporal form as
the air quality in nearby locations is related, and the air quality in one location
is temporally evolving. The spatial relations between different locations can
be denoted as a graph G = {V,E}, where the locations are the nodes, and the
edges describe the geographic relations between nodes. The air quality status
includes different indices such as PM2.5, PM10, NO2, SO2, O3, and CO. The air
quality status measured at time t for all locations inV is denoted as Xt, where
the i-th row of Xt is corresponding to the air quality status of location vi ∈ V.
In the task of air quality forecasting, we aim to predict air quality status for all
locations in a future time slot given the historical status. Generally, we denote
the air quality status we plan to predict at time t as Yt, where the i-th row is
corresponding to the i-th location vi. Then, the air quality forecasting problem
can be formulated as:

(YM+1, . . . ,YM+H) = f (X1, . . . ,XM), (12.10)

where (X1, . . . ,XM) is the observed air quality status from the previous M steps
and (YM+1, . . . ,YM+H) is the air quality status we aim to forecast in the next H
steps. The framework introduced in Section 12.3.1 can be used to forecast air
quality. In (Qi et al., 2019) where the goal is to predict only PM2.5, GCN-Filter
is utilized to capture the spatial relations between different locations while an
LSTM model is adopted to capture the temporal relations.

12.4 Cybersecurity Data Mining

With the growing use of the Internet, new vulnerabilities and attack schemes
are discovering every day for computer and communication systems. These
changes and dynamics have posed tremendous challenges to traditional secu-
rity approaches. Data mining can discover actionable patterns from data, and
thus it has been employed to tackle these cybersecurity challenges. Given that
cybersecurity data can be denoted as graphs, GNNs have facilitated various
aspects of cybersecurity data such as spammer detection and fake news detec-
tion.

12.4.1 Malicious Account Detection

Cyber attackers aim to attack large-scale online services such as email systems,
online social networks, e-commerce, and e-finance platforms by creating mali-
cious accounts and propagating spamming messages. These attacks are harm-
ful to these online services and could even cause a huge financial loss in certain

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

246 Graph Neural Networks in Data Mining

circumstances. Hence, it is important to detect these malicious accounts effec-
tively. Graph neural network models have been utilized to facilitate the task of
malicious account detection. In (Liu et al., 2018b), two patterns on the mali-
cious accounts are observed. First, malicious accounts from the same attacker
tend to signup or login to the same device or a common set of devices due
to the attackers’ limited resources. Second, malicious accounts from the same
group tend to behave in batches, i.e., they signup or login in a burst of time. A
graph between accounts and devices is built based on these two observations,
and the malicious account detection task is treated as a binary semi-supervised
classification task on this graph, where the goal is to tell whether an account
is malicious or not. Next, we first describe the graph construction process and
then discuss how graph neural network models can be leveraged for malicious
account detection.

Graph Construction
There are two types of objects involving in this task: accounts and devices.
The concept of “device” can be very general, including IP addresses or phone
numbers. We denote the set of types of devices as D. Assume that there are
N nodes, including accounts and devices. An edge is observed between an ac-
count and a device if an account has activities (e.g., signups and logins) in
this specific device. This constructed graph can be denoted as G = {V,E},
whereV and E are the node and edge sets, respectively. The relations between
these nodes in V can also be described by an adjacency matrix A. |D| sub-
graphs {G(d) = {V,E(d)}} are extracted from the graph G, where G(d) is the
subgraph consisting of all nodes but only edges involving type d ∈ D devices.
We use A(d) to denote the adjacency matrix of the subgraph G(d). A feature
vector xi ∈ R

p+|D| is associated with each node vi ∈ V. Specifically, the first p
elements in xi denote the frequency of activities in p consecutive periods. For
example, in (Liu et al., 2018b), p = 168 and each time period is 1 hour. The
last |D| elements in xi indicate the type of the device. If the node is a device, it
is a one-hot indicator of its type, and it is all 0 if it is an account.

Malicious Account Detection with Graph Neural Networks
Graph neural networks are utilized to refine the node features, which are then
leveraged to perform malicious account detection (or the binary classification).
The formulation of the semi-supervised classification task is the same as that
in Section 5.5.1. Hence, we mainly introduce the process of learning node
features. More specifically, we introduce a graph filter dedicated to this task as

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

12.4 Cybersecurity Data Mining 247

follows:

F(l) = σ

XΘ(l−1) +
1
|D|

∑
d∈D

A(d)F(l−1)Θ
(l−1)
(d)

 ,
where X denotes the input features of all nodes, F(l) is the hidden represen-
tations after l-th graph filtering layer with F(0) = 0, and {Θ(l−1), Θ(l−1)

(d) } are
parameters to be learned. Note that the graph filtering operation differs from
those introduced in Section 5.3.2, as it utilizes the input features X in each
graph filtering layer. The goal is to ensure that the account activity patterns
encoded by X can be better preserved. After L graph filtering layers, these
features are used to perform the binary classification. Since the malicious ac-
counts (from the same attacker) tend to connect with the same set of device
nodes, the graph filtering process will enforce them to have similar features.
Meanwhile, the activity patterns of the accounts are captured by the input fea-
ture X. Thus, aforementioned two patterns can be captured by the graph neural
network models, which benefits the task of malicious account detection.

12.4.2 Fake News Detection

Online social media has become one of the critical sources for people to obtain
news due to its easy access and instant dissemination. While being extremely
convenient and efficient, these platforms also significantly increase the risk of
propagating fake news. Fake news could lead to many negative consequences
or even severe societal issues and substantial financial loss. Hence, it is im-
mensely vital to detect fake news and prevent it from propagating through
social media. Substantial empirical evidence has shown that fake news has dif-
ferent propagation patterns from real news in online social media (Vosoughi
et al., 2018), which can be utilized to facilitate the task of fake news detection.
In (Monti et al., 2019), each story is modeled as a graph, which characterizes
its diffusion process and social relations in the social network platform such
as Twitter. Then, the task of fake news detection is treated as a binary graph
classification task, and graph neural network models are adopted to improve its
performance. Next, we describe the process to form the graphs for the stories
and then briefly introduce the graph neural network model designed for this
task.

Graph Construction
We take the news diffusion process in Twitter as an example to illustrate the
process of graph construction for each story. Given a story u with its corre-
sponding tweets Tu = {t

(1)
u , . . . , t(Nu)

u } which mention u, the story u is described

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

248 Graph Neural Networks in Data Mining

by a graph Gu. The graph Gu consists of all the tweets in Tu as nodes, while
the edges either describe the news diffusion process or the social relations be-
tween the authors of these tweets. We next describe the two types of edges
in this graph Gu. We use a(t(i)

u) to denote the author of a given tweet t(i)
u . The

first type of edges between the tweets is defined based on their authors, i.e,
an edge exists between two tweets t(i)

u and t(j)
u if the a(t(i)

u) follows a(t(j)
u) or

a(t(j)
u) follows a(t(i)

u). The second type of edges is based on the diffusion pro-
cess of this news u through the social network, i.e., an edge exists between two
tweets t(i)

u and t(j)
u if the news u spreads from one to the other. The news diffu-

sion path is estimated via (Vosoughi et al., 2018), which jointly considers the
timestamps of the tweets and the social connections between their authors. For
convenience, we assume that the superscript of a tweet t(i)

u indicates its times-
tamp information, i.e., all tweets with superscripts smaller than i are created
before t(i)

u while the ones with superscripts larger than i are created after t(i)
u .

Then, for a given tweet t(i)
u , we estimate its spreading path as:

• If a(t(i)
u) follows at least one author of the previous tweets {a(t(1)

u), . . . , a(t(i−1)
u)},

we estimate that the news spreads to t(i)
u from the very last tweet whose au-

thor is followed by a(t(i)
u).

• If a(t(i)
u) does not follow any authors of the previous tweets {a(t(1)

u), . . . , a(t(i−1)
u)},

then we estimate that the news spreads to t(i)
u from the tweet in {t(1)

u , . . . , t(i−1)
u }

whose author has the largest number of followers.

Fake News Detection as Graph Classification
We can build a graph for each story u as described above, and then we treat the
task of fake news detection as a binary graph classification task. The graph neu-
ral network framework for graph classification is introduced in Section 5.5.2,
which can be directly applied to this task. Specifically, in (Monti et al., 2019),
two graph filtering layers are stacked together to refine the node features, which
are followed by a graph mean-pooling layer to generate a graph representation.
The generated graph representation is then utilized to perform the binary clas-
sification.

12.5 Conclusion

This chapter describes how graph neural network models can be applied to
advance various sub-fields of data mining, including Web data mining, urban
data mining, and cybersecurity data mining. In Web data mining, we introduce
representative methods using GNNs for social network analysis and recom-
mender systems. In urban data mining, we discuss GNNs based models for

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

12.6 Further Reading 249

traffic prediction and air quality prediction. In cybersecurity data mining, we
provide representative algorithms built on GNNs to advance malicious account
detection and fake news detection.

12.6 Further Reading

There are more existing methods than the representative ones we have detailed
for the data mining tasks introduced in this chapter. For example, social infor-
mation is encoded by graph neural networks to predict the political perspec-
tive (Li and Goldwasser, 2019), and graph neural networks are employed for
fraud detection (Wang et al., 2019d; Liu et al., 2020), and anti-money launder-
ing (Weber et al., 2019). In addition, graph neural networks have been utilized
to help more data mining tasks, such as community detection (Chen et al.,
2017; Shchur and Günnemann, 2019) and anomaly detection (Wang et al.,
2020b; Chaudhary et al., 2019).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

13
Graph Neural Networks in Biochemistry and

Healthcare

13.1 Introduction

Graphs have been widely adopted to represent data in computational biochem-
istry and healthcare. For example, molecules and chemical compounds can be
naturally denoted as graphs with atoms as nodes and bonds connecting them
as edges. The protein-protein interactions (PPIs), which record the physical
contacts established between two or more proteins, can be captured as a graph.
Furthermore, in the drug industry, drug-drug interactions (DDIs), which de-
scribe the adverse outcomes when using certain combinations of drugs for
complex diseases, can also be represented as graphs. Given the powerful capac-
ity in learning graph representations, graph neural network models have been
adopted to facilitate many biochemistry and healthcare applications, includ-
ing drug development and discovery, multi-view drug similarity integration,
polypharmacy side effect prediction, medication recommendation, and disease
prediction. In this chapter, we discuss GNN models for representative applica-
tions in biochemistry and healthcare.

13.2 Drug Development and Discovery

Graph neural networks have been adopted to advance many tasks that are im-
portant for drug development and discovery. Examples of these tasks include:
1) molecule representation learning, which can facilitate downstream tasks
such as molecule property prediction and therefore can help narrow down
search space to find more promising candidates with proper properties; 2)
molecule graph generation, which aims to generate molecules with desired
properties; 3) drug-target binding affinity prediction, which is to predict the
drug-target interaction strength and thus can benefit the new drug development

250

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

13.2 Drug Development and Discovery 251

and drug re-purposing; and 4) protein interface prediction, which targets on
predicting the interaction interface of proteins and thus can allow us to un-
derstand molecular mechanisms. Next, we introduce the applications of graph
neural networks in molecule representation learning, drug-target binding affin-
ity prediction, and protein interface prediction. Note that we have introduced
representative methods that are partially based on graph neural network models
to generate molecular graphs in Section 9.4.2 and Section 9.5.2.

13.2.1 Molecule Representation Learning

It is important to predict the properties of novel molecules for applications in
material designs and drug discovery. Deep learning methods have been adopted
to perform the predictions on molecular data. Typically, deep learning meth-
ods such as feed-forward networks and convolutional neural networks cannot
be directly applied to molecular data as the molecule can be of arbitrary size
and shape. Hence, the prediction procedure usually consists of two stages: 1)
feature extraction: extracting molecule fingerprint, a vector representation en-
coding the structure information of the molecule; and 2) property prediction:
performing prediction with deep learning methods using the extracted finger-
print as input. Traditionally the molecular fingerprint is extracted using some
non-differentiable off-the-shelf fingerprint software without guidance from the
downstream prediction task. Thus, these extracted representations might not be
optimal for the downstream tasks. In (Duvenaud et al., 2015), an end-to-end
framework is proposed to perform the predictions, where graph neural net-
works are adopted to learn the molecular fingerprints in a differentiable way.
Specifically, a molecule can be represented as a graph G = {V,E} where nodes
are the atoms and edges represent the bonds between these atoms. Thus, the
task of molecular property prediction can be regarded as graph classification
or graph regression, which requires to learn graph-level representations. Note
that in the context of molecules, these representations are called molecular fin-
gerprints. Hence, the graph neural network model adopted to perform this task
consists of both graph filtering and graph pooling layers (see general frame-
work in Chapter 5). Specifically, in (Duvenaud et al., 2015), a global pooling
method is adopted. Next, we first introduce the graph filtering layers and then
introduce the global pooling layer to obtain the molecular fingerprint. For a
node vi ∈ V, the graph filtering operation (in the l-th layer) can be described
as:

F(l)
i = σ

F(l−1)

i +
∑

v j∈N(vi)

F(l−1)
j

Θ(l−1)
|N(vi)|

 , (13.1)

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

252 Graph Neural Networks in Biochemistry and Healthcare

where Θ(l−1)
|N(vi)|

is a transformation matrix depending on the size of the neigh-
borhood |N(vi)| of node vi. Thus, the total number of transformation matrices
in each layer is determined by the number of neighborhood size. In organic
molecules, an atom can have up to 5 neighbors, and hence there are 5 transfor-
mation matrices in each layer. The molecular fingerprint fG for a molecule G
can be obtained by the following global pooling operation:

fG =
L∑

l=1

∑
vi∈V

softmax
(
F(l)

i Θ
(l)
pool

)
, (13.2)

where L denotes the number of graph filtering layers, and Θ(l)
pool is utilized to

transform the node representations learned in the l-th layer. The global pool-
ing method in Eq. (13.2) aggregates the information from node representations
learned in all the graph filtering layers. The obtained molecule fingerprint fG
can then be adopted for downstream tasks such as property prediction. Both
the graph filtering process in Eq. (13.1) and the pooling process in Eq. (13.2)
are guided by the given downstream task such as molecule property predic-
tion (Liu et al., 2018a). In fact, besides the method we introduced above, any
graph neural networks designed for learning graph level-representations can be
utilized to learn the molecular representations. Specifically, we can compose
a graph neural network model with graph filtering layers and graph pooling
layers, as introduced in Chapter 5. In particular, the MPNN-Filter discussed in
Section 5.3.2 was introduced under the context of the molecular representation
learning (Gilmer et al., 2017).

13.2.2 Protein Interface Prediction

Proteins are chains of amino acids with biochemical functions (Fout et al.,
2017) as shown in Figure 13.2. As shown in Figure 13.1, an amino acid is an
organic compound. It contains amine (-NH2), carboxyl (-COOH) functional
groups and a side chain (R group), which is specific to each amino acid. To
perform their functions, proteins need to interact with other proteins. Predict-
ing the interface where these interactions occur is a challenging problem with
important applications in drug discovery and design (Fout et al., 2017). The
protein interaction interface consists of interacting amino acid residues and
nearby amino acid residues in the interacting proteins. Specifically, in (Af-
sar Minhas et al., 2014), two amino acid residues from different proteins are
considered to be a part of the interface if any non-hydrogen atom in one amino
acid residue is within 6Å of any non-hydrogen atom in the other amino acid
residue. Therefore, the protein interface prediction problem can be modeled as

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

13.2 Drug Development and Discovery 253

N
C

C

R

O

O

H

H

H

H

Figure 13.1 An illustrative example of amino acids.

Amino acid

Protein

Figure 13.2 A protein consists of a chain of amino acids

a binary classification problem where a pair of amino acid residues from dif-
ferent proteins are served as input. In (Fout et al., 2017), a protein is modeled
as a graph. In the graph, amino acid residues in the protein are treated as nodes,
and relations between them are defined as edges. Then, graph neural network
models are employed to learn node representations, which are then utilized for
classification. Next, we describe how proteins are treated as graphs and then
introduce the approach to perform the protein interface prediction.

Representing Proteins as Graphs
A protein can be represented as a graph G = {V,E}. In detail, each amino acid
residue in the protein is treated as a node. The spatial relations between the

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

254 Graph Neural Networks in Biochemistry and Healthcare

amino acid residues are utilized to build the edges between them. Specifically,
each amino acid residue node is connected to k closest amino acid residues
determined by the mean distance between their atoms. Each node and edge
in the graph are associated with some features. Specifically, features for node
vi ∈ V are denoted as xi and features for an edge (vi, v j) are represented as ei j.

Protein Interface Prediction
Given a pair of amino acid residues, one from a ligand protein Gl = {Vl,El}

and the other one from a receptor protein Gr = {Vr,Er}, the task of protein
interface prediction is to tell whether these two residues are in the protein in-
terface. It is treated as a binary classification problem where each sample is
a pair of amino acid residues (vl, vr) with vl ∈ Vl and vr ∈ Vr. Graph fil-
tering operations are applied to Gl and Gr to learn the node representations
and then the node representations for vl and vr are combined to obtain a uni-
fied representation for this pair, which is then utilized for the classification
by fully-connected layers. A graph filter similar to GCN-Filter (see details of
GCN-Filter in Section 5.3.2) is adopted to learn the node representations as
(for l-th layer):

F(l)
i = σ

F(l−1)
i Θ

(l−1)
c +

1
|N(vi)|

∑
v j∈N(vi)

F(l−1)
j Θ

(l−1)
N + b

 ,
where Θ(l−1)

c and Θ(l−1)
N are learnable matrices specific to the centering node

and the neighboring node respectively, and b is the bias term. Furthermore, to
incorporate the edge features, the following graph filtering operation is pro-
posed in (Fout et al., 2017):

F(l)
i = σ

F(l−1)
i Θ

(l−1)
c +

1
|N(vi)|

∑
v j∈N(vi)

F(l−1)
j Θ

(l−1)
N +

1
|N(vi)|

∑
v j∈N(vi)

ei jΘ
(l−1)
E + b

 ,
where ei j denotes the edge features for the edge (vi, v j) and Θ(l−1)

E is the learn-
able transformation matrix for edges. Note that the edge features are fixed dur-
ing the training process.

13.2.3 Drug-Target Binding Affinity Prediction

The development of a new drug is usually time-consuming and costly. The
identification of drug-target interactions (DTI) is vital in the early stage of the
drug development to narrow down the search space of candidate medications.
It can also be used for drug re-purposing, which aims to identify new targets for
existing or abandoned drugs. The task of drug-target binding affinity prediction

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

13.2 Drug Development and Discovery 255

Drug 𝐺! Protein 𝑝

GNNs Sequence
Model

Drug Representation Protein Representation

Concatenation

Predict

Output

Figure 13.3 A general framework for drug-target binding affinity prediction

is to infer the strength of the binding between a given drug-target pair. It can
be considered as a regression task. There are mainly four types of targets, i.e.,
protein, disease, gene, and side effect, frequently involved in the task of drug-
target interaction prediction. In this section, we use protein as the target to
illustrate how graph neural network models can be employed to facilitate this
task.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

256 Graph Neural Networks in Biochemistry and Healthcare

A drug-protein pair is denoted as (Gd, p), with Gd, p denoting the drug and
protein, respectively. The drug Gd is represented as a molecular graph with
atoms as nodes and the chemical bonds as edges. The protein can be denoted
as either a sequence or a graph. In (Nguyen et al., 2019), the proteins are repre-
sented as sequences of amino acids, which we adopt to illustrate the framework
for drug-target binding affinity prediction. An overview of a general frame-
work for drug-target binding affinity prediction is shown in Figure 13.3. In this
framework, the drug Gd is fed into a graph neural network model to learn a
graph-level drug representation, and the protein is fed into a sequence model
to learn a protein representation. These two representations are concatenated to
generate a combined representation for the pair, and it is then leveraged to pre-
dict the drug-target binding affinity. The graph neural network model consists
of graph filtering and graph pooling layers, as introduced in Chapter 5. The
GNN models introduced in Section 13.2.1 for molecule representation learn-
ing can also be used to learn the drug representation. Sequence models such
as 1-D CNN, LSTM, and GRU, can learn the protein representation. Further-
more, if we model the protein as a graph, we can also use the GNNs to replace
the sequence model in Figure 13.3 to learn its representation.

13.3 Drug Similarity Integration

With the rapid development of technology, drug data from multiple sources are
collected for computational drug discovery research, and drug safety studies.
For example, the structural information of drugs can be extracted by chemi-
cal fingerprints software and drug indication information is extracted from the
packages of drugs (Kuhn et al., 2016). To better facilitate the downstream task
such as drug-drug interaction (DDI) prediction, it is necessary to fuse the drug
data from multiple sources, as they contain information of drugs from vari-
ous perspectives. These multiple data sources of drugs may encode different
similarities between drugs and thus have different levels of association with
targeting outcomes. For example, drugs’ structural similarity could have more
impact on their interaction profiles than drugs’ indication similarity. In (Ma
et al., 2018c), an attentive algorithm based on graph neural networks is pro-
posed to fuse the drug similarity information from various sources with the
guidance of the down-stream tasks. Specifically, each source of drug features
is regarded as a view in (Ma et al., 2018c). For view t ∈ {1, . . . ,T }, the fea-
tures for all nodes in this view are denoted as a matrix Xt ∈ R

N×dt , where N
is the number of drugs and dt is the dimension of the features in this view.
Furthermore, the similarity information of the drugs in this view is encoded

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

13.4 Polypharmacy Side Effect Prediction 257

into a similarity matrix At ∈ R
N×N . The goal of multi-view drug similarity in-

tegration is to fuse the features and similarity matrices from different views to
generate integrated features Z ∈ RN×d and similarity matrix A across all views.

The similarity matrices from different views are combined as follows:

A =
T∑

t=1

diag(gt)At, (13.3)

where gt ∈ R
N is the attention scores learned as:

g′t = ΘtAt + bt,∀t = 1, . . . ,T,

[g1, . . . , gT] = softmax([g′1, . . . , g
′
T]),

where Θt,bt ∈ R
N are parameters to be learned and the softmax function is

applied to each row. With the fused similarity matrix A, the fused features are
obtained by applying a GNN-Filter on the multi-view features as:

Z = α(GNN-Filter(A,X)), (13.4)

where X = [X1, . . . ,XT] is the concatenation of the features from differ-
ent views. Specifically, the GCN-Filter (see details about GCN-Filter in Sec-
tion 5.3.2) is adopted in (Ma et al., 2018c) and α() is the softmax function (ap-
plied row-wisely). A decoder is then used to reconstruct X from Z expecting
that the fused representations contain as much information from X as possible.
The decoder is also modeled by a GNN-Filter as:

X′ = α(GNN-Filter(A,Z)), (13.5)

where the GCN-Filter is again adopted as the graph filter and sigmoid function
is adopted as the non-linear activation function α() in (Ma et al., 2018c). The
reconstruction loss is as:

Led = ∥X − X′∥2.

The parameters in Eq. (13.3), Eq. (13.4) and Eq. (13.5) can be learned by
minimizing the reconstruction loss. Furthermore, the fused representations Z
can be used for downstream tasks and the gradient from the downstream tasks
can also be leveraged to update the parameters in Eq. (13.3), Eq. (13.4) and
Eq. (13.5).

13.4 Polypharmacy Side Effect Prediction

A lot of complex diseases can not be treated by a single drug. A promising
strategy to combat these diseases is polypharmacy. It means using a com-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

258 Graph Neural Networks in Biochemistry and Healthcare

bination of several drugs to treat patients. However, a major adverse conse-
quence of polypharmacy is that it is highly risky to introduce side effects due
to drug-drug interactions. Hence, it is important to predict the side effects of
polypharmacy when adopting novel drug combinations to treat diseases. The
polypharmacy side effect prediction task is not only to predict whether a side
effect exists between a pair of drugs but also to tell what type of side effect it
is. Exploratory analysis in (Zitnik et al., 2018) shows that co-prescribed drugs
tend to have more target proteins in common than random drug pairs, which
indicates that the interactions between drug and target proteins are important
for polypharmacy modeling. Hence, the interactions between drug and target
proteins and the interactions between the target proteins, are incorporated for
polypharmacy side effect prediction in (Zitnik et al., 2018). In detail, a multi-
modal graph is built on the drug-drug interactions (polypharmacy side effects),
the drug-protein interactions and the protein-protein interactions. The task of
polypharmacy prediction is thus modeled as a multi-relational link prediction
task over the multi-modal graph. The goal is to predict whether a link exists
between a pair of drugs and then what type of the link it is if existing. Graph
neural network models have been adopted to learn the node representations,
which are then used to perform the prediction. Next, we first describe how to
construct the multi-modal graph and then introduce the framework to perform
the polypharmacy side effect prediction.

Multi-modal Graph Construction
As shown in Figure 13.4, a two-layer multi-modal graph with two types of
nodes (drugs and proteins) are built upon three different interactions includ-
ing drug-drug interactions, drug-protein interactions, and protein-protein in-
teractions. Drug-drug interactions encode the observed polypharmacy side ef-
fects. For example, in Figure 13.4, the drug Doxycycline (node D) and drug
Ciprofloxacin (node C) are connected by the relation r2 (bradycardia side ef-
fect), which indicates that taking a combination of these two drugs likely leads
to the bradycardia side effect. The drug-protein interactions describe the pro-
teins that a drug targets on. For example, in Figure 13.4, the drug Ciprofloxacin
(node C) targets on 4 proteins. The protein-protein interactions encode the
physical binding relations between proteins in humans. In particular, this two-
layer multi-modal graph can be denoted as G = {V,E,R}. In G, V is the set
of nodes consisting of drugs and proteins, E denotes the edges. Each e ∈ E is
in the form of e = (vi, r, v j) with r ∈ R and R is the set of relations, which in-
cludes: 1) protein-protein interactions, 2) a target relationship between a drug
and a protein; and 3) various types of side effects between drugs.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

13.4 Polypharmacy Side Effect Prediction 259

D

C

S

M

𝑟!
𝑟"

𝑟!

Doxycycline

Cliprofloxacin

Simvastatin

Mupirocin

Polypharmacy
Side effects

Drug Protein Node feature vector

𝑟! Gastrointestinal bleed side effect
Bradycardia side effect𝑟"

Drug-protein interaction
Protein-protein interaction

Drug-drug interaction

Figure 13.4 An illustrative example of the two-layer multi-modal graph with
drug-drug interactions, drug-protein interactions, and protein-protein interactions

Polypharmacy Side Effect Prediction
The task of polypharmacy side effect prediction is modeled as a relational
link prediction task on G. In particular, given a pair of drugs {vi, v j}, we want
to predict how likely an edge ei j = (vi, r, v j) of type r ∈ R exists between
them. In (Zitnik et al., 2018), graph filtering operations are adopted to learn
the node representations, which are them utilized to perform the relational link
prediction. Specifically, the graph filtering operation designed for knowledge
graph (Schlichtkrull et al., 2018) is adapted to update the node representations
as:

F(l)
i = σ

∑
r∈R

∑
v j∈Nr(vi)

ci j
r F(l−1)

j Θ(l−1)
r + ci

rF
(l−1)
i

 , (13.6)

where F(l)
i is the hidden representation of node vi after the l-th layer, r ∈ R

is a relation type and Nr(vi) denotes the set of neighbors of node vi under the
relation of r. The matrix Θ(l−1)

r is a transform matrix specific to the relation

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

260 Graph Neural Networks in Biochemistry and Healthcare

type r. ci j
r and ci

r are normalization constants defined as follows:

ci j
r =

1√
|Nr(vi)||Nr(v j)|

,

ci
r =

1
|Nr(vi)|

.

The input of the first layer is the node features F(0)
i = xi. The final node repre-

sentations are the output of the L-th layer, i.e., zi = F(L)
i , where zi denotes the

final representation of node vi. With the learned node representations, given a
pair of drugs vi, v j, the probability of a relational edge with relation r existing
between them is modeled as:

p(vi, r, v j) = σ
(
zT

i DrRDrz j

)
, (13.7)

where σ() is the sigmoid function, R is a learnable matrix shared by all rela-
tions and Dr is a learnable diagonal matrix specific to relation r. The reason
to use a shared matrix R is that many relations (side effects) between drugs
are rarely observed, and learning specific matrices for them may cause over-
fitting. Introducing the shared parameter matrix R largely reduces the number
of parameters of the model; hence it can help prevent overfitting. During the
training stage, the parameters in both the graph filters in Eq. (13.6) and the
prediction model in Eq. (13.7) are optimized by maximizing the probability
in Eq. (13.7) for those observed side effects between drugs. Note that in (Zit-
nik et al., 2018), other types of relations, i.e., protein-protein interactions and
drug-protein interactions, are also reconstructed during the training with their
probabilities formulated similar to Eq. (13.7).

13.5 Disease Prediction

Increasing volume of medical data, which usually contains imaging, genetic
and behavioral data, is collected and shared to facilitate the understanding of
disease mechanisms. The task of disease prediction is to tell whether a sub-
ject is diseased or not given its corresponding medical image and non-image
data. The medical images are often the MRI images of the subjects, and the
non-image data usually includes phenotypic data such as age, gender, and ac-
quisition site. These two types of information are complementary to each other.
Hence, facilitating both information effectively is necessary to enhance the per-
formance of disease prediction. The image data directly provides the features
corresponding to some diseases of the subject, and the phenotypic information
provides some association between the subjects. For example, subjects with

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

13.5 Disease Prediction 261

similar ages tend to have more similar outcomes than those with very different
ages when all other conditions are the same. Graphs provide an intuitive way
of modeling these two types of information, where we treat subjects as nodes
with their image as node features and the associations between them as edges.
With the built graph, the disease prediction task can be treated as a binary
semi-supervised node classification task. It can be tackled by the graph neural
network models, as introduced in Section 5.5.1. Next, we briefly introduce the
process of building the graph using the ABIDE database (Di Martino et al.,
2014) as an illustrative example (Parisot et al., 2018).

The ABIDE database contains neuroimaging (functional MRI) and pheno-
typic data of subjects from different international acquisition sites. With this
database, we aim to predict whether a subject is healthy or suffering from the
autism spectrum disorder (ASD). Each subject is modeled as a node vi in the
graph G, and xi denotes the features extracted from its corresponding fMRI
image. To build the edges between the nodes (i.e. the adjacency matrix for the
graph), we consider both the image data and the non-image phenotypic mea-
suresM = {Mh}

H
h=1 as:

Ai, j = sim(xi, x j)
H∑

h=1

γh(Mh(vi),Mh(v j)),

where A denotes the adjacency matrix, sim(xi, x j) computes the similarity be-
tween the features of two nodes vi and v j, Mh(vi) is the h-th phenotypic mea-
sure of node vi and γh() calculates their similarity. The similarity function
sim(xi, x j) can be modeled with Gaussian kernels, where nodes with smaller
distance have a higher similarity score. Three phenotypic measures, acquisition
site, gender and age, are utilized, i.e. we have H = 3 for the ABIDE database.
The acquisition site is considered since the database is acquired from very dif-
ferent sites with diverse acquisition protocol, which results in less comparable
images across different acquisition sites. Gender and age are considered since
gender-related and age-related group differences have been observed (Werling
and Geschwind, 2013; Kana et al., 2014). For gender and acquisition site, the
function γh() is defined as the Kronecker delta function, which takes value 1 if
and only if the two inputs are the same (i.e. they are from the same acquisition
site or they have the same gender), otherwise 0. For age, the function γh() is
defined as:

γh

(
Mh(vi),Mh(v j)

)
=

{
1 if

∣∣∣Mh(vi) − Mh(v j)
∣∣∣ < θ

0 otherwise
,

where θ is a predefined threshold. This means that subjects with age difference
smaller than θ are considered to be similar with each other.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

262 Graph Neural Networks in Biochemistry and Healthcare

13.6 Conclusion

In this chapter, we introduced various representative applications of graph neu-
ral network models in biochemistry and healthcare. We discuss the applications
of graph neural network models in molecule representation learning, drug-
target binding affinity prediction, and protein interface prediction. These tasks
can facilitate the development and discovery of novel drugs. Next, we intro-
duced an autoencoder based on graph filers to integrate multi-view drug simi-
larities. We also described how graph neural network models can be used for
polypharmacy side effect prediction. Besides, we discussed how graph neural
network models can be leveraged for disease prediction.

13.7 Further Reading

In addition to the applications we have detailed in this chapter, graph neural
networks have been adopted or served as building blocks to benefit many other
biochemistry tasks. They are employed as building blocks in models designed
for medication recommendation (Shang et al., 2019b,c). In (You et al., 2018a),
the graph neural network models have been leveraged as policy networks for
molecule graph generation with reinforcement learning. Besides, graph neural
network models have also been employed for computational phenotyping (Zhu
et al., 2019b; Choi et al., 2020) and disease association prediction (Xuan et al.,
2019; Li et al., 2019a).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

PART FOUR

ADVANCES

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

14
Advanced Topics in Graph Neural Networks

14.1 Introduction

In Part TWO, we have discussed the most established methods of deep learn-
ing on graphs. On the one hand, with the increasingly deep understandings,
numerous limitations have been identified for existing GNNs. Some of these
limitations inherit from traditional DNNs. For example, as DNNs, GNNs are
often treated as black-boxes and lack human-intelligible explanations; and they
might present discrimination behaviors to protected groups that can result in
unprecedented ethical, moral, and even legal consequences for human society.
Others are unique to GNNs. For instance, increasing the number of layers of
GNNs often leads to significant performance drop, and there are limitations on
the expressive power of existing GNNs in distinguishing graph structures. On
the other hand, recently, more successful experiences from traditional DNNs
have been adapted to advance GNNs. For example, strategies have been de-
signed to explore unlabeled data for GNNs, and there are attempts to extend
GNNs from Euclidean space to hyperbolic space. We package these recent ef-
forts into this chapter about advanced topics in GNNs with two goals. First,
we aim to bring our readers near the frontier of current research on GNNs.
Second, these topics can serve as promising future research directions. For the
aforementioned advanced topics, some are relatively well developed, includ-
ing deeper graph neural networks, exploring unlabeled data via self-supervised
learning for GNNs, and the expressiveness of GNNs. We will detail them in the
following sections. In contrast, others are just initialized, and we will provide
corresponding references as further reading.

265

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

266 Advanced Topics in Graph Neural Networks

14.2 Deeper Graph Neural Networks

It is observed that increasing the number of graph filtering layers (such as
GCN-Filter, GAT-Filter; see Section 5.3.2 for more graph filtering operations)
to a large number often results in a significant drop in node classification per-
formance. The performance drop is mainly caused by oversmoothing. It de-
scribes the phenomenon that the node features become similar and less distin-
guishable as the number of graph filtering layers increases (Li et al., 2018b).
Next, we discuss the “oversmoothing” issue based on the GCN-Filter. Intu-
itively, from a spatial perspective, the GCN-Filter is to update a node’s rep-
resentation by “averaging” its neighbors’ representations. This process natu-
rally renders representations for neighboring nodes to be similar. Thus, deeply
stacking graph filtering operations tends to make all the nodes (assume that
the graph is connected) have similar representations. In (Li et al., 2018b), the
oversmoothing phenomenon is studied asymptotically as the number of graph
filtering layers goes to infinity. Specifically, when the number of filtering lay-
ers goes to infinity, the nodes’ representations converge to the same regardless
of their input features. For the ease of analysis, the non-linear activation layers
between the graph filtering layers are ignored in (Li et al., 2018b). Without the
non-linear activation layers, repeatedly applying L GCN-Filters to the input
features F can be expressed as:

D̃−
1
2 ÃD̃−

1
2

(
· · ·

(
D̃−

1
2 ÃD̃−

1
2

(
D̃−

1
2 ÃD̃−

1
2 FΘ(0)

)
Θ(1)

)
· · ·

)
Θ(L−1),

=
(
D̃−

1
2 ÃD̃−

1
2

)L
FΘ, (14.1)

whereΘ denotes the multiplication ofΘ(0), . . . ,Θ(L−1), Ã = A+I as introduced
in the GCN-Filter in Eq. (5.21) and D̃ is the corresponding degree matrix.
The filtering process in Eq. (14.1) can be viewed as applying the operation(
D̃− 1

2 ÃD̃− 1
2

)L
to each column of FΘ.

The following theorem (Li et al., 2018b) demonstrates the oversmoothing
phenomenon on single channel graph signals:

Theorem 14.1 Let G denote a connected non-bipartite graph with A as its
adjacency matrix. Then, for any input feature f ∈ RN , we have

lim
L→∞

(
D̃−

1
2 ÃD̃−

1
2

)L
f = θ1 · u1, (14.2)

where Ã = A + I and D̃ denotes its corresponding degree matrix. Here Ã can
be regarded as the adjacency matrix of a modified version of graph G with
self-loops. The vector u1 is the eigenvector of D̃− 1

2 ÃD̃− 1
2 associated with its

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

14.2 Deeper Graph Neural Networks 267

largest eigenvalue and θ1 = u⊤1 f. In detail, u1 = D̃− 1
2 1, which only contains the

information of the node degree.

Proof Let L̃nor = I− D̃− 1
2 ÃD̃− 1

2 denote the normalized Laplacian matrix cor-
responding to Ã. According to Lemma 1.7 in (Chung and Graham, 1997),
L̃nor has a complete set of eigenvalues 0 = λ1 < λ2 . . . , λN < 2 with their
corresponding eigenvectors u1, . . . ,uN . Specifically, in the matrix form, the
eigen-decomposition of L̃nor can be represented as L̃nor = UΛU⊤, where
U = [u1, . . . ,uN] is the matrix that consists of all eigenvectors and Λ =
diag([λ1, . . . , λN]) is the diagonal eigenvalue matrix. The eigenvalues and eigen-
vectors of D̃− 1

2 ÃD̃− 1
2 can be related to those of L̃ as:

D̃−
1
2 ÃD̃−

1
2 = I − L̃nor = UU⊤ − UΛU⊤ = U (I − Λ) U⊤.

Hence, 1 = 1−λ1 > 1−λ2 . . . , > 1−λN > −1 are the eigenvalues of D̃− 1
2 ÃD̃− 1

2

with u1, . . . ,uN as its corresponding eigenvectors. Then, we have(
D̃−

1
2 ÃD̃−

1
2

)L
=

(
U (I − Λ) U⊤

)L
= U (I − Λ)L U⊤.

As the eigenvalues of Ã are in the range of [0, 1), the limit in Eq. (14.2) can be
expressed as:

lim
k→∞

(
D̃−

1
2 ÃD̃−

1
2

)L
f = lim

k→∞
U (I − Λ)L U⊤f

= Udiag([1, 0, . . . , 0])U⊤f
= u1 · (u⊤1 f)

= θ1 · u1,

which completes the proof. □

Theorem 14.1 shows that repeatedly applying the GCN-Filters to a graph
signal f results in θ1 · u1, which captures information no more than the node
degrees. For the multi-channel case as shown in Eq. (14.1), each column of
the matrix FΘ is mapped to θ1 · u1 with different θ1. Hence, different columns
contain the same information with different scales. Furthermore, the degree
information contained in u1 is likely not be useful for most node classifica-
tion tasks, which also explains why the node classification performance de-
creases as the number of graph filtering layers increases. Similar observations
for the case where the non-linear activation (limited to the ReLU activation
function) is included are made in (Oono and Suzuki, 2020). Specifically, it is
shown in (Oono and Suzuki, 2020) that the ReLU activation function accel-
erates the process of oversmoothing. The goal of the GCN-Filter is to update
node representations with the information of neighboring nodes. Stacking k

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

268 Advanced Topics in Graph Neural Networks

GCN-Filters allows each node to access information from its k-hop neighbor-
hood. To achieve good performance for node classification, it is necessary to
aggregate the information from the local neighborhood for each node. How-
ever, as shown in above, stacking too many graph filtering layers leads to the
oversmoothing issue. Various remedies have been proposed to alleviate the
oversmoothing issue (Xu et al., 2018a; Rong et al., 2020; Zhao and Akoglu,
2019).

14.2.1 Jumping Knowledge

It is argued in (Xu et al., 2018a) that different nodes require neighborhoods
with different depth and thus different numbers of graph filtering layers are
required for different nodes. Hence, a strategy named Jumping Knowledge is
proposed in (Xu et al., 2018a), which adaptively combines the hidden rep-
resentations for each node from different layers as the final representations.
Specifically, let F(1)

i , . . . ,F(L)
i be the hidden representations for node vi after

the 1, . . . , L-th layer, respectively. These representations are combined to gen-
erate the final representation for node vi as follows:

Fo
i = JK

(
F(0)

i ,F(1)
i , . . . ,F(L)

i

)
,

where JK() is a function which is adaptive for each node. In particular, it can
be implemented as the max-pooling operation or an attention based LSTM.

14.2.2 DropEdge

Dropedge (Rong et al., 2019) is introduced to alleviate the oversmoothing is-
sue by randomly dropping some edges in the graph during each training epoch.
Specifically, before the training of each epoch, a fraction of edges Ep is uni-
formly sampled from E with a sampling rate p. These sampled edges are re-
moved from the edge set, and the remaining edges are denoted as Er = E/Ep.
The graph G′ = {V,Er} is then used for training in this epoch.

14.2.3 PairNorm

As discussed before, we desire some smoothness of the node representations to
ensure good classification performance while preventing them from being too
similar. An intuitive idea is to ensure that the representations of disconnected
nodes are relatively distant. In (Zhao and Akoglu, 2019), PairNorm is proposed
that introduces a regularization term to force representations of nodes that are
not connected to be different.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

14.3 Exploring Unlabeled Data via Self-supervised Learning 269

14.3 Exploring Unlabeled Data via Self-supervised Learning

To train good deep learning models, it usually requires a huge amount of la-
beled data. For a specific task, it is usually hard and expensive to collect/annotate
massive labeled data. However, unlabeled data is typically rich and easy to
obtain. For instance, if we are building a sentiment analysis model, the anno-
tated data might be limited, while unlabeled texts are widely available. Thus,
it is appealing to take advantage of unlabeled data. In fact, unlabeled data has
been used to advance many areas, such as computer vision and natural lan-
guage processing. In image recognition, deep convolutional neural networks
pre-trained on ImageNet such as Inception (Szegedy et al., 2016) and VGG (Si-
monyan and Zisserman, 2014) have been widely adopted. Note that images
from ImageNet are originally labeled; however, they are considered as unla-
beled data for a given specific image recognition task, which could have very
different labels from these in the ImageNet dataset. In natural language pro-
cessing, pre-trained language models such as GPT-2 (Radford et al., 2019) and
BERT (Devlin et al., 2018) have been adopted to achieve the state of the art
performance for various tasks such as question answering and natural language
generation. Therefore, it is promising and has the great potential to explore un-
labeled data to enhance deep learning on graphs. This chapter discusses how
graph neural networks can use unlabeled data for node classification and graph
classification/regression tasks. For node classification, unlabeled data has been
incorporated by graph neural networks via the simple information aggrega-
tion process. This process could be insufficient to make use of unlabeled data
fully. Hence, we discuss strategies to leverage unlabeled data more thoroughly.
In graph classification/regression tasks, labeled graphs could be limited, but
many unlabeled graphs are available. For example, when performing classifi-
cation/regression tasks on molecules, labeling molecules is expensive, while
unlabeled molecules can be easily collected. Therefore, we present approaches
to leverage unlabeled graphs for graph-focused tasks.

14.3.1 Node-focused Tasks

The success of deep learning relies on massive labeled data. Self-supervised
learning (SSL) has been developed to alleviate this limitation. It often first de-
signs a domain-specific pretext task and then learns better representations with
the pretext task to include unlabeled data. As aforementioned, GNNs simply
aggregate features of unlabeled data that cannot thoroughly take advantage of
the abundant information. Thus, to fully explore unlabeled data, SSL has been
harnessed for providing additional supervision for GNNs. The node-focused

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

270 Advanced Topics in Graph Neural Networks

self-supervised tasks usually generate additional supervised signals from the
graph structure and/or node attributes. Such generated self-supervised infor-
mation can serve as the supervision of auxiliary tasks to improve the perfor-
mance of GNNs on the node classification task. There are majorly two ways to
utilize these generated self-supervised signals (Jin et al., 2020c): 1) two-stage
training, where the self-supervised task is utilized to pre-train the graph neu-
ral network model, and then the graph neural network model is fine-tuned for
the node classification task; 2) joint training, where the self-supervised task
and the main task are optimized together. Specifically, the objective of joint
training can be formulated as follows:

L = Llabel + η · Lsel f ,

where Llabel denotes the loss of the main task, i.e., node classification task and
Lsel f is the loss of the self-supervised task. Next, we briefly introduce some of
the self-supervised tasks. In detail, we categorize these self-supervised tasks
by the information they leverage to construct the self-supervised signals: 1)
constructing self-supervised signals with graph structure information; 2) con-
structing self-supervised signals with node attribute information; and 3) con-
structing self-supervised signals with both graph structure and node attribute
information.

Graph Structure Information
In this subsection, we introduce self-supervised tasks based on graph structure
information.

• Node Property (Jin et al., 2020c). In this task, we aim to predict the node
property using the learned node representations. These node properties can
be node degree, node centrality, and local clustering coefficient.

• Centrality Ranking (Hu et al., 2019). In this task, we aim to preserve the
centrality ranking of the nodes. Instead of directly predict centrality as that
in Node Property, the task aims to predict pair-wise ranking given any pair
of nodes.

• Edge Mask (Jin et al., 2020c; Hu et al., 2020, 2019). In this task, we ran-
domly mask (or remove) some edges from the graph and try to predict their
existence using the node representations learned by graph neural networks.

• Pairwise Distance (Peng et al., 2020; Jin et al., 2020c). In this task, we aim
to utilize the node representations to predict the distance between pairs of
nodes in the graph. Specifically, the distance between two nodes is measured
by the length of the shortest path between them.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

14.3 Exploring Unlabeled Data via Self-supervised Learning 271

• Distance2Clusters (Jin et al., 2020c). Instead of predicting the distance be-
tween node pairs, in this task, we aim to predict the distance between a
node to the clusters in the graph, which can help learn the global position
information of these nodes. Clustering methods based on graph structure
information such as METIS graph partitioning algorithm (Karypis and Ku-
mar, 1998) are first utilized to generate a total of K clusters. Then, for each
cluster, the node with the largest degree in this cluster is chosen as its center.
The task of Distance2Cluster is to predict the distances between a node to
the centers of these K clusters. Again, the distance is measured by the length
of the shortest path between nodes.

Node Attribute Information
In this subsection, we introduce self-supervised tasks based on node attribute
information.

• Attribute Mask (Jin et al., 2020c; You et al., 2020; Hu et al., 2020). In this
task, we randomly mask (or remove) the associated attribute information of
some nodes in the graph and aim to utilize the node representations learned
from the graph neural network models to predict these node attributes.

• PairwiseAttrSim (Jin et al., 2020c). This task is similar to Pair-wise Dis-
tance in the sense that we also aim to predict pair-wise information between
nodes. Specifically, we aim to predict the similarity between node attributes,
where the similarity can be measured by cosine similarity or Euclidean dis-
tance.

Graph Structure and Node Attribute Information
In this subsection, we introduce self-supervised tasks based on both graph
structure and node attribute information.

• Pseudo Label (Sun et al., 2019c; You et al., 2020). In this task, pseudo
labels are generated for unlabeled nodes using the graph neural network
model or other models. Then they are utilized as supervised signals to re-
train the model together with the labeled nodes. In (You et al., 2020), clusters
are generated using the learn node representations from the graph neural
network model, and the clusters are used as the pseudo labels. In (Sun et al.,
2019c), these clusters are aligned with the real labels and then employed as
the pseudo labels.

• Distance2Labeled (Jin et al., 2020c). This task is similar to the task of
Distance2Cluster. Instead of predicting distance between nodes and pre-
calculated clusters, we aim to predict the distance between unlabeled nodes
to the labeled nodes.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

272 Advanced Topics in Graph Neural Networks

• ContextLabel (Jin et al., 2020c). The ContextLabel task is to predict the
label distribution of the context for the nodes in the graph. The context of
a given node is defined as all its k-hop neighbors. The label distribution of
the nodes in the context of a given node can then be formulated as a vector.
Its dimension is the number of classes where each element indicates the
frequency of the corresponding label in the context. Nevertheless, the label
information of the unlabeled nodes is unknown. Hence the distribution can
not be accurately measured. In (Jin et al., 2020c), methods such as Label
propagation (LP) (Zhu et al., 2003) and Iterative Classification Algorithm
(ICA) (Neville and Jensen, n.d.) are adopted to predict the pseudo labels,
which are then used to estimate the label distribution.

• CorrectedLabel (Jin et al., 2020c). This task is to enhance the ContextLa-
bel task by iteratively refining the pseudo labels. Specifically, there are two
phases in this task: the training phase and the label correction phase. Given
the pseudo labels, the training phase is the same as the task of ContextLabel.
The predicted pseudo labels in the training phase are then refined in the label
correction phase using the noisy label refining algorithm proposed in (Han
et al., 2019). These refined (corrected) pseudo labels are adopted to extract
the context label distribution in the training phase.

14.3.2 Graph-focused Tasks

In the graph-focused tasks, we denote the set of labeled graphs asDl = {(Gi, yi)},
where yi is the associated label of the graph Gi. The set of unlabeled graphs is
denoted asDu = {(G j)}. Typically, the number of the unlabeled graphs is much
larger than that of labeled graphs, i.e., |Du| ≫ |Dl|. Exploring unlabeled data
aims to extract knowledge from Du to help train models on Dl. To take ad-
vantage of unlabeled data, self-supervision signals are extracted. As the node-
focused case, there are mainly two ways to leverage knowledge fromDu. One
is via two-stage training, where GNNs are pre-trained on the unlabeled data
Du with the self-supervised objective and then fine-tuned on the labeled data
Dl. The other is through joint training, where the self-supervised objective is
included as a regularization term to be optimized with the supervised loss. In
this section, we introduce graph level self-supervised tasks.

• Context Prediction (Hu et al., 2019). In context prediction, the pre-training
task is to predict whether a given pair of K-hop neighborhood and context
graph belongs to the same node. Specifically, for every node v in a graph
G, its K-hop neighborhood consists of all nodes and edges that are at most
K-hops away from node v inG, which can be denoted asNK

G
(v). Meanwhile,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

14.4 Expressiveness of Graph Neural Networks 273

𝑟!
𝑟" 𝐾

Figure 14.1 Context Prediction

the context graph of a node v ∈ G is defined by two hyper-parameters r1, r2,
and it is a subgraph that contains nodes and edges between r1 and r2 hops
away from the node v in the graph G. In detail, the context graph of node v
in a graph G is a ring of width r2 − r1 as shown in Figure 14.1, which can
be denoted as Cv,G. Note that r1 is required to be smaller than K to ensure
that there are some nodes shared between the neighborhood and the context
graph of node v. The task of context prediction is then modeled as a binary
classification. It is to determine whether a particular neighborhood NK

G
(v)

and a particular context graph Cv,G belong to the same node. A similar task
is proposed in (Sun et al., 2019b) where, given a node and a graph, the goal
is to predict whether the node belongs to the given graph.

• Attribute Masking (Hu et al., 2019). In attribute masking, some node/edge
attributes (e.g., atom types in molecular graphs) in a given graph fromDu is
randomly masked. Then graph neural network models are trained to predict
these masked node/edge attributes. Note that the attribute masking strategy
can only be applied to graphs with node/edge attributes.

• Graph Property Prediction (Hu et al., 2019). While there might be no
labels for graphs inDu for the specific task we want to perform onDl, there
could be other graph attributes available for them. These graph attributes can
serve as the supervised signal to pre-train the graph neural network model.

14.4 Expressiveness of Graph Neural Networks

Increasing efforts have been made to analyze the expressiveness of graph neu-
ral network models. They aim to analyze the capability of graph neural net-
work models to distinguish graph structures from the graph-level perspective.

274 Advanced Topics in Graph Neural Networks

Hence, for the ease of discussion, we quickly recap the graph neural network
models for graph-focused tasks. We write a general aggregation based spatial
graph filter of the l-th layer of graph neural network model as:

a(l)
i = AGG

({
F(l−1)

j |v j ∈ N(vi)
})
,

F(l)
i = COM

(
F(l−1)

i , a(l)
i

)
,

where a(l)
i represents the information aggregated from the neighbors of node

vi with the function AGG() and F(l)
i is the hidden representation of node vi

after the l-th graph filtering layer. The function COM() combines the hidden
representation of node vi from the (l−1)-th layer together with the aggregated
information to generate the hidden representations in the l-th layer. For graph-
focused tasks, a pooling operation is usually operated on the representations
{F(L)

i |vi ∈ V} to generate the graph representation, where L is the number of
graph filtering layers. Note that, in this chapter, for convenience, we only con-
sider flat pooling operations and the process of pooling is described as:

FG = POOL
({

F(L)
i |vi ∈ V

})
,

where FG denotes the graph representation. There are different choices and de-
signs for the AGG(), COM(), and POOL() functions, which results in graph
neural network models with different expressiveness. It is shown in (Xu et al.,
2019d) that no matter what kinds of functions are adopted, the graph neural
network models are at most as powerful as Weisfeiler-Lehman (WL) graph
isomorphism test (Weisfeiler and Leman, n.d.) in distinguishing graph struc-
tures. The WL test is a powerful test, which can distinguish a broad class of
graph structures. Conditions are further established under which the graph neu-
ral network models can be as powerful as the WL test in distinguishing graph
structures. Next, we first briefly introduce the WL test and how graph neural
network models are related. We then present some key results on the expres-
siveness of graph neural network models.

14.4.1 Weisfeiler-Lehman Test

Two graphs are considered to be topologically identical (or isomorphic) if there
is a mapping between the node sets of the graphs such that the adjacency re-
lations are the same. For example, two isomorphic graphs are shown in Fig-
ure 14.2, where the color and number indicate the mapping relations between
the two sets of nodes. The graph isomorphism task aims to tell whether two
given graphs G1 and G2 are topologically identical. It is computationally ex-
pensive to test graph isomorphism, and no polynomial-time algorithm has been

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

14.4 Expressiveness of Graph Neural Networks 275

1

2

3

4

5

3

1

2

4

5

Graph 1 Graph 2

Figure 14.2 Two isomorphic graphs

found yet (Garey and Johnson, n.d.; Babai, 2016). The Weisfeiler-Lehman test
is an efficient and effective approach for the graph isomorphism task. It can
distinguish a broad class of graphs while failing to distinguish some corner
cases (Cai et al., 1992).

For convenience, we assume that each node in the two graphs is associated
with labels (attributes). For example, in Figure 14.2, the numbers can be treated
as the labels. In practice, the same labels could be associated with different
nodes in the graph. A single iteration of the WL test can be described as:

• For each node vi, we aggregate its neighbors’ labels (including itself) into a
multi-set NL(vi), i.e, a set with repeated elements.

• For each node vi, we hash the multi-set NL(vi) into a unique new label,
which is now associated with node vi as its new label. Note that any nodes
with the same multi-set of labels are hashed to the same new label.

The above iteration is repeatedly applied until the sets of labels of two graphs
differ from each other. If the sets of labels differ, then the two graphs are non-
isomorphic, and the algorithm is terminated. After N (or the number of nodes
in the graph) iterations, if the sets of labels of the two graphs are still the same,
the two graphs are considered to be isomorphic, or the WL test fails to distin-
guish them (see (Cai et al., 1992) for the corner cases where the WL test fails).
Note that the graph neural network models can be regarded as a generalized
WL test. Specifically, the AGG() function in the GNNs corresponds to the ag-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

276 Advanced Topics in Graph Neural Networks

𝑣 𝑣‘

Graph structure (a) Graph structure (b)

Figure 14.3 Graph structures that mean and max functions fail to distinguish

gregation step in the WL test, and the COM() function corresponds to the hash
function in the WL test.

14.4.2 Expressiveness

The expressiveness of the graph neural network models can be related to the
graph isomorphism task. Ideally, a graph neural network model with sufficient
expressiveness can distinguish graphs with different structures by mapping
them into different embeddings. The following lemma shows that the graph
neural network models are at most as powerful as the WL test in distinguish-
ing non-isomorphic graphs.

Lemma 14.2 (Xu et al., 2019d) Given any two non-isomorphic graphs G1

and G2, if a graph neural network model maps these two graphs into dif-
ferent embeddings, the WL test also decides that these two graphs are non-
isomorphic.

The power of the WL test is largely attributed to its injective aggregation
operation, i.e., the hash function maps nodes with different neighborhoods to
different labels. However, many popular aggregation functions in graph neu-
ral network models are not injective. Next, we briefly discuss some AGG()
functions and provide examples of graph structures where these AGG() func-
tions fail to distinguish. Both the mean function and max function introduced
in (Hamilton et al., 2017a) are not injective. As shown in Figure 14.3, assum-
ing that all nodes have the same label (or the same feature), the local structures

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

14.5 Conclusion 277

of nodes v and v′ are distinct as they have different numbers of neighbors.
However, if mean or max is adopted as the AGG() function, the same rep-
resentation is obtained as the aggregation result for nodes v and v′. Hence,
these two substructures shown in Figure 14.3 cannot be distinguished if mean
or max is adopted as the AGG() function. To improve the expressiveness of
the GNN models, it is important to design the functions carefully, including
AGG(), COM(), and POOL() to be injective. Specifically, the graph neural
network models are as powerful as WL test if all these functions are injective
as stated in the following theorem:

Theorem 14.3 (Xu et al., 2019d) A graph neural network model with suffi-
cient graph filtering layers can map two graphs that are tested as non-isomorphic
by the WL test to different embeddings, if all AGG(), COM() and POOL() func-
tions in the graph neural network model are injective.

Theorem 14.3 provides guidance on designing graph neural network models
with high expressiveness. While the graph neural network models are at most
as powerful as the WL test in distinguishing graph structures, they have their
advantages over the WL test. The GNNs models can map graphs into low-
dimensional embeddings, which capture the similarity between them. How-
ever, the WL test is not able to compare the similarity between graphs except
for telling whether they are isomorphic or not. Hence, GNNs are suitable for
tasks like graph classification, where graphs can have different sizes, and non-
isomorphic graphs with similar structures could belong to the same class.

14.5 Conclusion

In this chapter, we discussed advanced topics in graph neural networks. We
describe the oversmoothing issue in graph neural networks and discuss some
remedies to mitigate this issue. We introduce various self-supervised learning
tasks on graph-structured data for both node- and graph-focused tasks. We
demonstrate that the graph neural network models are at most as powerful as
the WL test in distinguishing graph structures and provide some guidance in
developing graph neural networks with high expressiveness.

14.6 Further Reading

As aforementioned, there are more new directions on graph neural networks
that are just initialized. In (Ying et al., 2019; Yuan et al., 2020), explainable

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

278 Advanced Topics in Graph Neural Networks

graph neural network models have been developed. Specifically, In (Ying et al.,
2019), sample-level explanations are generated for graph neural networks, i.e.,
generating explanations for each sample. While in (Yuan et al., 2020), model-
level explanations have been studied for graph neural networks, i.e., under-
standing how the entire graph neural network model works. In (Tang et al.,
2020), the fairness issues of GNNs have been investigated. It is observed that
the node classification performance based on GNNs varies in terms of the node
degrees. In particular, nodes with low-degrees tend to have a higher error rate
than those with high degrees. In (Chami et al., 2019; Liu et al., 2019a), graph
neural networks have been extended to hyperbolic space to facilitate both the
expressiveness of GNNs and the hyperbolic geometry.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

15
Advanced Applications in Graph Neural

Networks

15.1 Introduction

In PART THREE, we have introduced representative applications of graph
neural networks, including natural language proceeding, computer vision, data
mining, and biochemistry and healthcare. Graph neural networks have been
employed to facilitate more advanced applications as graphs are natural rep-
resentations of data produced by many real-world applications and systems.
Numerous combinational optimization problems on graphs such as minimum
vertex cover and the traveling salesman problem are NP-Hard. Graph neural
networks have been used to learn the heuristics for these NP-hard problems.
Graphs can denote source code in programs from many perspectives, such as
data and control flow. Thus, graph neural networks can be naturally leveraged
to learn representations for source code to automate various tasks such as vari-
able misuse detection and software vulnerability detection. For dynamical sys-
tems in Physics, the objects and their relations can often be denoted as graphs.
Graph neural networks have been adopted to infer future states of dynamic
systems. This chapter discusses these advanced and sophisticated applications
and then introduces how graph neural networks can be applied.

15.2 Combinatorial Optimization on Graphs

Many combinational optimization problems on graphs such as minimum ver-
tex cover (MVC) and travelling salesman problem (TSP) are NP-Hard. In other
words, no polynomial-time solutions are available for them (under the con-
dition P, NP). These problems are hence usually tackled by approximation
algorithms or heuristics. Designing good heuristics is usually a challenging
and tedious process, which requires significant problem-specific knowledge

279

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

280 Advanced Applications in Graph Neural Networks

and trial-and-error. Hence, it is desired to learn heuristics automatically. Graph
neural networks have been utilized to learn these heuristics from given sam-
ples and then try to find solutions for unseen tasks. Next, we first describe some
combinatorial optimization problems on graphs and then briefly introduce how
graph neural networks can be leveraged to facilitate these tasks.

• Minimum Vertex Cover (MVC). Given a graph G = {V,E}, a vertex cover
S ⊂ V is a subset of vertices that includes at least one endpoint for every
edge in E. The problem of minimum vertex cover (MVC) is to find a vertex
cover that has the smallest amount of nodes.

• Maximum Cut (MAXCUT). Given a graphG = {V,E}, a cutC = {S,V/S}
is a partition of V into two disjoint subsets S and V/S. Its corresponding
cut-set is the subset of edges Ec ∈ E with one endpoint in S and the other
endpoint in V/S. The problem of maximum cut is to find such a cut C,
where the weights of its cut-set Ec denoted as

∑
(u,v)∈Ec

w(u, v) are maximized,

where w(u, v) denotes the weight of edge (u, v).
• Traveling Salesman Problem (TSP). Given a collection of cities connected

through routes, the traveling salesman problem is to find the shortest route
that visits every city once and comes back to the starting city. It can be
modeled as a graph G = {V,E}, where nodes are the cities and edges are
the routes connecting them. The distance between cities can be modeled as
weights on the edges.

• Maximal Independent Set (MIS). Given a graph G, an independent set is
a subset of vertices S ⊂ V where no pair of nodes is connected by an edge.
The problem of maximal independent set is to find the independent set with
the largest number of nodes.

Some of these problems can often be modeled as a node/edge annotation prob-
lem, where the goal is to tell whether a node/edge is in the solution or not. For
example, the problem of minimum vertex cover (MVC) can be modeled as a
node annotation problem (or a node classification problem), where the node in
the solution is annotated as 1. In contrast, those not in the solution are anno-
tated as 0. Similarly, the travel salesman problem can be modeled as a prob-
lem of node selection or edge annotation. Graph neural networks are suitable
to tackle these problems, given rich training samples. However, directly tack-
ling these problems as purely node/edge annotation tasks may lead to invalid
solutions. For example, in the task of maximal independent set problem, two
connected nodes might be annotated as 1 at the same time during the inference,
which may lead to a invalid independent set. Hence, some search heuristics are
usually utilized with graph neural networks to find valid solutions.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

15.3 Learning Program Representations 281

In (Khalil et al., 2017), these problems are modeled as a sequential node
selection task, which is tackled with reinforcement learning. The graph neu-
ral network model is utilized to model the state representations for the deep
reinforcement learning framework. A solution is constructed by sequentially
adding nodes to a partial solution. These nodes are sequentially selected greed-
ily by maximizing some evaluation functions in the reinforcement learning
framework, which is used to measure the quality of the solution (or partial so-
lution). After the nodes are chosen, a helper function is employed to organize
them into a valid solution of given tasks. For example, for the MAXCUT task,
given the selected set S, its complimentary set V/S is found, and the max-
imum cut-set includes all edges with one endpoint in one set and the other
endpoint in the other set.

Instead of sequentially choosing nodes with a reinforcement learning frame-
work, the tasks are modeled as a node annotation task in (Li et al., 2018e). Dur-
ing the training stage, nodes in each training sample are annotated with 1 or 0,
where 1 indicates that nodes are in the set of solutions. After training, given a
new sample, the graph neural network model can output a probability score for
each node, indicating how likely it should be included in the solution. Then a
greedy search algorithm is proposed based on these probability scores to build
valid solutions recursively. For example, for the MIS task, nodes are first sorted
by the probability scores in descending order. Then we iterate all nodes in this
order and label each node with 1 and its neighbors with 0. The process stops
when we encounter the first node labeled with 0. Next, we remove all labeled
nodes (labeled with 1 or 0) and use the remaining nodes to build an induced
subgraph. We repeat the process on the induced subgraph. The entire process
is terminated until all nodes in the graph are labeled.

In (Joshi et al., 2019), the graph neural network model is trained to annotate
edges to solve the travel salesman problem. During training, edges in each
training sample are annotated with 1 or 0, indicating whether the edge is in
the solution or not. Then, during the inference stage, the model can predict
probability scores for edges in the graph. These scores are combined with the
beam search to find valid solutions for TSP.

15.3 Learning Program Representations

Machine learning techniques have been adopted to automate various tasks on
source code, such as variable misuse detection and software vulnerability de-
tection. A natural way to denote the source code is to treat it as “articles” in
a specific language. Then we can transfer the techniques designed for NLP

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

282 Advanced Applications in Graph Neural Networks

to deal with source code. However, representing source code as a sequence
of tokens usually fails to capture the syntactic and semantic relations in the
code. Recently, there are increasing attempts to represent code as graphs and
graph neural networks have been employed to learn representations to facili-
tate down-stream tasks. Next, we first briefly introduce how source code can be
denoted as graphs. Then, we describe some downstream tasks and how graph
neural networks can be employed to handle these tasks.

There are various ways to construct graphs from source code. Representative
ones are listed below (Zhou et al., 2019):

• Abstract Syntax Tree (AST). One common graph representation for the
program is the abstract syntax tree (AST). It encodes the abstract syntactic
structure of the source code. Usually, AST is used by code parsers to un-
derstand the code structures and find syntactic errors. Nodes in AST consist
of syntax nodes (corresponding to non-terminals in the programming lan-
guage’s grammar) and syntax tokens (corresponding to terminals). Directed
edges are adopted to represent the child-parent relations.

• Control Flow Graph (CFG). The control flow graph describes all potential
paths to be traversed in a program during the execution. CFGs consist of
statements and conditions as nodes. The conditional statements such as if
and switch are the key nodes of forming different paths. The edges in CFGs
indicate the transfer of the control between statements.

• Data Flow Graph (DFG). A data flow graph describes how variables are
used through the program. It has the variables as its nodes, and the edges
represent any access or modifications to these variables.

• Natural Code Sequence (NCS). The NCS is a sequence of the source code,
where the edges connect neighboring code tokens according to the order in
the source code.

These graphs can further be combined to form a more comprehensive graph,
which encodes both syntactic and semantic information about the program.
Different tasks can be performed with graph neural networks based on the
built graphs for a given program. Graph neural networks are usually utilized to
learn node representations or graph representations, which are then employed
to perform these tasks. There are tasks focusing on nodes in the graphs such
as variable misuse detection in a program (Allamanis et al., 2017) and also
tasks focusing on the entire program graph such as software vulnerability de-
tection (Zhou et al., 2019).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

15.4 Reasoning Interacting Dynamical Systems in Physics 283

15.4 Reasoning Interacting Dynamical Systems in Physics

Interacting systems are ubiquitous in nature, and dynamical systems in physics
are one of the representatives. Inferring the future states or underlying proper-
ties of the dynamical system is challenging due to the complicated interactions
between objects in the dynamical system. The objects and their relations in dy-
namical systems can be typically denoted as a graph, where the objects are the
nodes, and the relations between them can be captured as edges. We introduce
some dynamical systems in physics and then briefly describe how graph neural
networks can be used to infer these dynamical systems.

• N-body. In the N-body domain, there are N objects. All N objects in this
dynamic system exert gravitational forces to each other, which is dependent
on their mass and pair-wise distance. As the relations are pair-wise, there
are in total, N(N − 1) relations, which can be modeled as a fully-connected
graph. Predicting the dynamics of solar systems can be regarded as an N-
body problem.

• Bouncing balls. In the domain of the bouncing ball, there are two types of
objects, i.e., the balls and the walls. The balls are constantly moving, which
can collide with other balls and the static walls. Assuming that there are, in
total, N objects including both balls and walls, N(N − 1) pair-wise relations
exist, which again can be modeled as a fully-connected graph.

• Charged particles. In the charged particles domain, there are N particles,
and each of them carries positive or negative charges. Each pair of particles
interact with each other; hence, there are N(N − 1) relations and the system
can be modeled as a fully connected graph.

The goal of the task is to infer the future status, given the history (or the initial
status) of the dynamical system. The status of the dynamical system can be
represented by the trajectories of the objects T = {xi, . . . , xN}, where xi =

{x(0)
i , . . . x(t)

i } with x(t)
i denoting the status of node i at time t. Usually, the status

information about an object includes its positions or velocity.
In (Battaglia et al., 2016), a model named interaction network is proposed to

model and predict the future status of the dynamical system. The model can be
viewed as a specific type of graph neural networks. It is also based on passing
messages through the graphs to update the node representations. Specifically,
there are relation-centric and node-centric functions in the interaction network
model, where the relation-centric function is adopted to model the effect of the
interactions between nodes, while the node-centric function takes the output of
the relation-centric function to update the status of the nodes. Hence, compared
with the MPNN framework we introduced in Section 5.3.2, the relation-centric

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

284 Advanced Applications in Graph Neural Networks

function can be regarded as the message function while the node-centric func-
tion can be viewed as the update function. These functions are usually modeled
with neural networks. Note that the interaction network can handle different
types of objects and relations by designing various types of functions. A more
general framework, named as graph networks, is proposed in (Battaglia et al.,
2018).

The interaction network assumes that relations between the objects are known,
which might not be practical. In (Kipf et al., 2018), a model is proposed to infer
the types of relations while predicting the future status of the dynamical sys-
tem. It takes the form of variational autoencoder, where both the encoder and
decoder are modeled by graph neural networks. The encoder, which is applied
to the original input graph G, takes the observed trajectories (the history of the
dynamical system) as input and predicts the types of relations. The graph with
the information of relation types from the encoder is denoted as G′. It is used
as the input graph for the decoder. The decoder is also modeled with graph
neural networks, and its goal is to predict the future status of the interacting
system.

15.5 Conclusion

In this chapter, we discuss some advanced applications of graph neural net-
works. We introduced their usage to produce heuristics for NP-hard combina-
tional optimizations on graphs such as minimum vertex cover, maximum cut,
the traveling salesman problem, and maximal independent set. We illustrated
how source code can be denoted as graphs and how graph neural networks
can be leveraged to learn program representations to facilitating down-stream
tasks. We also presented how to infer the future dynamics of interacting phys-
ical systems via graph neural networks.

15.6 Further Reading

Graph neural networks have been proven to be powerful in handling graph-
structured data. They are continually being employed for new applications.
In (Jeong et al., 2019), musical scores are denoted as graphs, and graph neural
networks are applied to these graphs to render expressive piano performance.
In (Zhang et al., 2019c), graph neural networks are adopted to speed up the
process of distributed circuit design. In (Rusek et al., 2019), graph neural net-

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

15.6 Further Reading 285

works are utilized to facilitate network modeling and optimization in software
defined networks (SDN).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography

Abadi, Martı́n, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng, Citro,
Craig, Corrado, Greg S., Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghe-
mawat, Sanjay, Goodfellow, Ian, Harp, Andrew, Irving, Geoffrey, Isard, Michael,
Jia, Yangqing, Jozefowicz, Rafal, Kaiser, Lukasz, Kudlur, Manjunath, Leven-
berg, Josh, Mané, Dandelion, Monga, Rajat, Moore, Sherry, Murray, Derek, Olah,
Chris, Schuster, Mike, Shlens, Jonathon, Steiner, Benoit, Sutskever, Ilya, Talwar,
Kunal, Tucker, Paul, Vanhoucke, Vincent, Vasudevan, Vijay, Viégas, Fernanda,
Vinyals, Oriol, Warden, Pete, Wattenberg, Martin, Wicke, Martin, Yu, Yuan, and
Zheng, Xiaoqiang. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org.

Adamic, Lada A, and Adar, Eytan. 2003. Friends and neighbors on the web. Social
networks, 25(3), 211–230.

Afsar Minhas, Fayyaz ul Amir, Geiss, Brian J, and Ben-Hur, Asa. 2014. PAIRpred:
Partner-specific prediction of interacting residues from sequence and structure.
Proteins: Structure, Function, and Bioinformatics, 82(7), 1142–1155.

Aggarwal, Charu C. 2018. Neural networks and deep learning. Springer, 10, 978–3.
Allamanis, Miltiadis, Brockschmidt, Marc, and Khademi, Mahmoud. 2017. Learning

to represent programs with graphs. arXiv preprint arXiv:1711.00740.
Andersen, Reid, Chung, Fan, and Lang, Kevin. 2006. Local graph partitioning using

pagerank vectors. Pages 475–486 of: 2006 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’06). IEEE.

Atwood, James, and Towsley, Don. 2016. Diffusion-convolutional neural networks.
Pages 1993–2001 of: Advances in neural information processing systems.

Babai, László. 2016. Graph isomorphism in quasipolynomial time. Pages 684–697 of:
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

Bai, Song, Zhang, Feihu, and Torr, Philip HS. 2019. Hypergraph convolution and hy-
pergraph attention. arXiv preprint arXiv:1901.08150.

Banarescu, Laura, Bonial, Claire, Cai, Shu, Georgescu, Madalina, Griffitt, Kira, Her-
mjakob, Ulf, Knight, Kevin, Koehn, Philipp, Palmer, Martha, and Schneider,
Nathan. 2013. Abstract meaning representation for sembanking. Pages 178–186

287

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

288 Bibliography

of: Proceedings of the 7th Linguistic Annotation Workshop and Interoperability
with Discourse.

Bastings, Joost, Titov, Ivan, Aziz, Wilker, Marcheggiani, Diego, and Sima’an, Khalil.
2017. Graph convolutional encoders for syntax-aware neural machine translation.
arXiv preprint arXiv:1704.04675.

Battaglia, Peter, Pascanu, Razvan, Lai, Matthew, Rezende, Danilo Jimenez, et al. 2016.
Interaction networks for learning about objects, relations and physics. Pages
4502–4510 of: Advances in neural information processing systems.

Battaglia, Peter W, Hamrick, Jessica B, Bapst, Victor, Sanchez-Gonzalez, Alvaro, Zam-
baldi, Vinicius, Malinowski, Mateusz, Tacchetti, Andrea, Raposo, David, Santoro,
Adam, Faulkner, Ryan, et al. 2018. Relational inductive biases, deep learning, and
graph networks. arXiv preprint arXiv:1806.01261.

Baytas, Inci M, Xiao, Cao, Wang, Fei, Jain, Anil K, and Zhou, Jiayu. 2018. Heteroge-
neous Hyper-Network Embedding. Pages 875–880 of: 2018 IEEE International
Conference on Data Mining (ICDM). IEEE.

Beck, Daniel, Haffari, Gholamreza, and Cohn, Trevor. 2018. Graph-to-Sequence Learn-
ing using Gated Graph Neural Networks. Pages 273–283 of: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers).

Belkin, Mikhail, and Niyogi, Partha. 2003. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6), 1373–1396.

Berg, Rianne van den, Kipf, Thomas N, and Welling, Max. 2017. Graph convolutional
matrix completion. arXiv preprint arXiv:1706.02263.

Berlusconi, Giulia, Calderoni, Francesco, Parolini, Nicola, Verani, Marco, and Piccardi,
Carlo. 2016. Link prediction in criminal networks: A tool for criminal intelligence
analysis. PloS one, 11(4), e0154244.

Bhagat, Smriti, Cormode, Graham, and Muthukrishnan, S. 2011. Node classification in
social networks. Pages 115–148 of: Social network data analytics. Springer.

Bishop, Christopher M. 2006. Pattern recognition and machine learning. springer.
Bonacich, Phillip. 1972. Factoring and weighting approaches to status scores and clique

identification. Journal of mathematical sociology, 2(1), 113–120.
Bonacich, Phillip. 2007. Some unique properties of eigenvector centrality. Social net-

works, 29(4), 555–564.
Bonchev, Danail. 1991. Chemical graph theory: introduction and fundamentals. Vol.

1. CRC Press.
Bondy, John Adrian, et al. Graph theory with applications. Vol. 290.
Borgatti, Stephen P, Mehra, Ajay, Brass, Daniel J, and Labianca, Giuseppe. 2009. Net-

work analysis in the social sciences. science, 323(5916), 892–895.
Bourigault, Simon, Lagnier, Cedric, Lamprier, Sylvain, Denoyer, Ludovic, and Galli-

nari, Patrick. 2014. Learning social network embeddings for predicting infor-
mation diffusion. Pages 393–402 of: Proceedings of the 7th ACM international
conference on Web search and data mining.

Boyd, Stephen, Boyd, Stephen P, and Vandenberghe, Lieven. 2004. Convex optimiza-
tion. Cambridge university press.

Bracewell, Ronald Newbold. The Fourier transform and its applications. Vol. 31999.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 289

Bruna, Joan, Zaremba, Wojciech, Szlam, Arthur, and LeCun, Yann. 2013. Spec-
tral networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203.

Cai, Hongyun, Zheng, Vincent W, and Chang, Kevin Chen-Chuan. 2018. A comprehen-
sive survey of graph embedding: Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering, 30(9), 1616–1637.

Cai, Jin-Yi, Fürer, Martin, and Immerman, Neil. 1992. An optimal lower bound on the
number of variables for graph identification. Combinatorica, 12(4), 389–410.

Cao, Shaosheng, Lu, Wei, and Xu, Qiongkai. 2015. Grarep: Learning graph represen-
tations with global structural information. Pages 891–900 of: Proceedings of the
24th ACM international on conference on information and knowledge manage-
ment.

Cao, Shaosheng, Lu, Wei, and Xu, Qiongkai. 2016. Deep neural networks for learning
graph representations. In: Thirtieth AAAI conference on artificial intelligence.

Cao, Yu, Fang, Meng, and Tao, Dacheng. 2019. BAG: Bi-directional Attention En-
tity Graph Convolutional Network for Multi-hop Reasoning Question Answer-
ing. Pages 357–362 of: Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

Carlini, Nicholas, and Wagner, David. 2017. Towards evaluating the robustness of
neural networks. Pages 39–57 of: 2017 ieee symposium on security and privacy
(sp). IEEE.

Cartwright, Dorwin, and Harary, Frank. 1956. Structural balance: a generalization of
Heider’s theory. Psychological review, 63(5), 277.

Cauchy, Augustin. Méthode générale pour la résolution des systemes d’équations si-
multanées.

Chami, Ines, Ying, Zhitao, Ré, Christopher, and Leskovec, Jure. 2019. Hyperbolic
graph convolutional neural networks. Pages 4868–4879 of: Advances in neural
information processing systems.

Chan, T-H Hubert, and Liang, Zhibin. 2019. Generalizing the hypergraph Laplacian
via a diffusion process with mediators. Theoretical Computer Science.

Chan, T-H Hubert, Louis, Anand, Tang, Zhihao Gavin, and Zhang, Chenzi. 2018. Spec-
tral properties of hypergraph Laplacian and approximation algorithms. Journal of
the ACM (JACM), 65(3), 15.

Chang, Shiyu, Han, Wei, Tang, Jiliang, Qi, Guo-Jun, Aggarwal, Charu C, and Huang,
Thomas S. 2015. Heterogeneous network embedding via deep architectures.
Pages 119–128 of: Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining.

Chaudhary, Anshika, Mittal, Himangi, and Arora, Anuja. 2019. Anomaly Detection
Using Graph Neural Networks. Pages 346–350 of: 2019 International Conference
on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon).
IEEE.

Chen, Jianfei, Zhu, Jun, and Song, Le. 2018a. Stochastic Training of Graph Convolu-
tional Networks with Variance Reduction. Pages 941–949 of: International Con-
ference on Machine Learning.

Chen, Jie, Ma, Tengfei, and Xiao, Cao. 2018b. Fastgcn: fast learning with graph con-
volutional networks via importance sampling. arXiv preprint arXiv:1801.10247.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

290 Bibliography

Chen, Tianshui, Yu, Weihao, Chen, Riquan, and Lin, Liang. 2019a. Knowledge-
embedded routing network for scene graph generation. Pages 6163–6171 of: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Chen, Ting, and Sun, Yizhou. 2017. Task-guided and path-augmented heterogeneous
network embedding for author identification. Pages 295–304 of: Proceedings of
the Tenth ACM International Conference on Web Search and Data Mining.

Chen, Xia, Yu, Guoxian, Wang, Jun, Domeniconi, Carlotta, Li, Zhao, and Zhang, Xi-
angliang. 2019b. ActiveHNE: Active Heterogeneous Network Embedding. arXiv
preprint arXiv:1905.05659.

Chen, Zhao-Min, Wei, Xiu-Shen, Wang, Peng, and Guo, Yanwen. 2019c. Multi-Label
Image Recognition with Graph Convolutional Networks. Pages 5177–5186 of:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion.

Chen, Zhengdao, Li, Xiang, and Bruna, Joan. 2017. Supervised community detection
with line graph neural networks. arXiv preprint arXiv:1705.08415.

Cheng, Kewei, Li, Jundong, and Liu, Huan. 2017. Unsupervised feature selection
in signed social networks. Pages 777–786 of: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

Chiang, Wei-Lin, Liu, Xuanqing, Si, Si, Li, Yang, Bengio, Samy, and Hsieh, Cho-Jui.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph con-
volutional networks. Pages 257–266 of: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

Cho, Kyunghyun, Van Merriënboer, Bart, Gulcehre, Caglar, Bahdanau, Dzmitry,
Bougares, Fethi, Schwenk, Holger, and Bengio, Yoshua. 2014a. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078.

Cho, Minsu, Sun, Jian, Duchenne, Olivier, and Ponce, Jean. 2014b. Finding matches in
a haystack: A max-pooling strategy for graph matching in the presence of outliers.
Pages 2083–2090 of: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

Choi, Edward, Xu, Zhen, Li, Yujia, Dusenberry, Michael, Flores, Gerardo, Xue, Emily,
and Dai, Andrew. 2020. Learning the Graphical Structure of Electronic Health
Records with Graph Convolutional Transformer. Pages 606–613 of: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34.

Chung, Fan RK, and Graham, Fan Chung. 1997. Spectral graph theory. American
Mathematical Soc.

Cohen, Marco Damonte Shay B. 2019. Structural Neural Encoders for AMR-to-text
Generation. Pages 3649–3658 of: Proceedings of NAACL-HLT.

Cui, Peng, Wang, Xiao, Pei, Jian, and Zhu, Wenwu. 2018. A survey on network embed-
ding. IEEE Transactions on Knowledge and Data Engineering, 31(5), 833–852.

Cygan, Marek, Pilipczuk, Marcin, Pilipczuk, Michał, and Wojtaszczyk, Jakub Onufry.
2012. Sitting closer to friends than enemies, revisited. Pages 296–307 of: Interna-
tional Symposium on Mathematical Foundations of Computer Science. Springer.

Dahl, George, Ranzato, Marc’Aurelio, Mohamed, Abdel-rahman, and Hinton, Geof-
frey E. 2010. Phone recognition with the mean-covariance restricted Boltzmann
machine. Pages 469–477 of: Advances in neural information processing systems.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 291

Dai, Hanjun, Li, Hui, Tian, Tian, Huang, Xin, Wang, Lin, Zhu, Jun, and Song, Le.
2018. Adversarial Attack on Graph Structured Data. In: Proceedings of the 35th
International Conference on Machine Learning, PMLR, vol. 80.

De Cao, Nicola, and Kipf, Thomas. 2018. MolGAN: An implicit generative model for
small molecular graphs. arXiv preprint arXiv:1805.11973.

De Cao, Nicola, Aziz, Wilker, and Titov, Ivan. 2019. Question Answering by Reason-
ing Across Documents with Graph Convolutional Networks. Pages 2306–2317
of: Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers).

Deerwester, Scott, Dumais, Susan T, Furnas, George W, Landauer, Thomas K, and
Harshman, Richard. 1990. Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6), 391–407.

Defferrard, Michaël, Bresson, Xavier, and Vandergheynst, Pierre. 2016. Convolutional
neural networks on graphs with fast localized spectral filtering. Pages 3844–3852
of: Advances in neural information processing systems.

Deng, Li, and Liu, Yang. 2018. Deep learning in natural language processing. Springer.
Deng, Li, Seltzer, Michael L, Yu, Dong, Acero, Alex, Mohamed, Abdel-rahman, and

Hinton, Geoff. 2010. Binary coding of speech spectrograms using a deep auto-
encoder. In: Eleventh Annual Conference of the International Speech Communi-
cation Association.

Derr, Tyler, Ma, Yao, and Tang, Jiliang. 2018. Signed graph convolutional networks.
Pages 929–934 of: 2018 IEEE International Conference on Data Mining (ICDM).
IEEE.

Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova, Kristina. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805.

Dhillon, Inderjit S, Guan, Yuqiang, and Kulis, Brian. 2007. Weighted graph cuts with-
out eigenvectors a multilevel approach. IEEE transactions on pattern analysis
and machine intelligence, 29(11), 1944–1957.

Di Martino, Adriana, Yan, Chao-Gan, Li, Qingyang, Denio, Erin, Castellanos, Fran-
cisco X, Alaerts, Kaat, Anderson, Jeffrey S, Assaf, Michal, Bookheimer, Susan Y,
Dapretto, Mirella, et al. 2014. The autism brain imaging data exchange: towards
a large-scale evaluation of the intrinsic brain architecture in autism. Molecular
psychiatry, 19(6), 659–667.

Dong, Yuxiao, Chawla, Nitesh V, and Swami, Ananthram. 2017. metapath2vec: Scal-
able representation learning for heterogeneous networks. Pages 135–144 of: Pro-
ceedings of the 23rd ACM SIGKDD international conference on knowledge dis-
covery and data mining. ACM.

Duchi, John, Hazan, Elad, and Singer, Yoram. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul), 2121–2159.

Duvenaud, David K, Maclaurin, Dougal, Iparraguirre, Jorge, Bombarell, Rafael, Hirzel,
Timothy, Aspuru-Guzik, Alán, and Adams, Ryan P. 2015. Convolutional networks
on graphs for learning molecular fingerprints. Pages 2224–2232 of: Advances in
neural information processing systems.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

292 Bibliography

Entezari, Negin, Al-Sayouri, Saba A, Darvishzadeh, Amirali, and Papalexakis, Evange-
los E. 2020. All You Need Is Low (Rank) Defending Against Adversarial Attacks
on Graphs. Pages 169–177 of: Proceedings of the 13th International Conference
on Web Search and Data Mining.

Fan, Wenqi, Ma, Yao, Li, Qing, He, Yuan, Zhao, Eric, Tang, Jiliang, and Yin, Dawei.
2019. Graph Neural Networks for Social Recommendation. Pages 417–426 of:
The World Wide Web Conference. ACM.

Feller, William. 1957. An introduction to probability theory and its applications. aitp.
Feng, Fuli, He, Xiangnan, Tang, Jie, and Chua, Tat-Seng. 2019a. Graph adversarial

training: Dynamically regularizing based on graph structure. IEEE Transactions
on Knowledge and Data Engineering.

Feng, Yifan, You, Haoxuan, Zhang, Zizhao, Ji, Rongrong, and Gao, Yue. 2019b. Hyper-
graph neural networks. Pages 3558–3565 of: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33.

Fernandes, Patrick, Allamanis, Miltiadis, and Brockschmidt, Marc. 2018. Structured
neural summarization. arXiv preprint arXiv:1811.01824.

Fey, Matthias, and Lenssen, Jan E. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs
and Manifolds.

Finn, Chelsea, Abbeel, Pieter, and Levine, Sergey. 2017. Model-agnostic meta-learning
for fast adaptation of deep networks. Pages 1126–1135 of: Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org.

Fouss, Francois, Pirotte, Alain, Renders, Jean-Michel, and Saerens, Marco. 2007.
Random-walk computation of similarities between nodes of a graph with applica-
tion to collaborative recommendation. IEEE Transactions on knowledge and data
engineering, 19(3), 355–369.

Fout, Alex, Byrd, Jonathon, Shariat, Basir, and Ben-Hur, Asa. 2017. Protein interface
prediction using graph convolutional networks. Pages 6530–6539 of: Advances
in Neural Information Processing Systems.

Frobenius, Georg, Frobenius, Ferdinand Georg, Frobenius, Ferdinand Georg, Frobe-
nius, Ferdinand Georg, and Mathematician, Germany. 1912. Über Matrizen aus
nicht negativen Elementen.

Fu, Tsu-Jui, Li, Peng-Hsuan, and Ma, Wei-Yun. 2019. GraphRel: Modeling text as
relational graphs for joint entity and relation extraction. Pages 1409–1418 of:
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics.

Gao, Hongyang, and Ji, Shuiwang. 2019. Graph U-Nets. Pages 2083–2092 of: Chaud-
huri, Kamalika, and Salakhutdinov, Ruslan (eds), Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA. Proceedings of Machine Learning Research, vol. 97.
PMLR.

Gao, Hongyang, Wang, Zhengyang, and Ji, Shuiwang. 2018a. Large-scale learnable
graph convolutional networks. Pages 1416–1424 of: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining.

Gao, Hongyang, Wang, Zhengyang, and Ji, Shuiwang. 2020. Kronecker Attention Net-
works. Pages 229–237 of: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 293

Gao, Ming, Chen, Leihui, He, Xiangnan, and Zhou, Aoying. 2018b. Bine: Bipartite
network embedding. Pages 715–724 of: The 41st International ACM SIGIR Con-
ference on Research & Development in Information Retrieval.

Garey, Michael R, and Johnson, David S. Computers and intractability. Vol. 174.
Gidaris, Spyros, and Komodakis, Nikos. 2019. Generating classification weights with

gnn denoising autoencoders for few-shot learning. Pages 21–30 of: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.

Gilmer, Justin, Schoenholz, Samuel S., Riley, Patrick F., Vinyals, Oriol, and Dahl,
George E. 2017. Neural Message Passing for Quantum Chemistry. Pages 1263–
1272 of: Precup, Doina, and Teh, Yee Whye (eds), Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017. Proceedings of Machine Learning Research, vol. 70. PMLR.

Goldberg, David, Nichols, David, Oki, Brian M, and Terry, Douglas. 1992. Using
collaborative filtering to weave an information tapestry. Communications of the
ACM, 35(12), 61–70.

Goldberg, Ken, Roeder, Theresa, Gupta, Dhruv, and Perkins, Chris. 2001. Eigentaste: A
constant time collaborative filtering algorithm. information retrieval, 4(2), 133–
151.

Goldberg, Yoav. 2016. A primer on neural network models for natural language pro-
cessing. Journal of Artificial Intelligence Research, 57, 345–420.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David,
Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. 2014a. Generative adversar-
ial nets. Pages 2672–2680 of: Advances in neural information processing systems.

Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. 2016. Deep learning.
Goodfellow, Ian J, Shlens, Jonathon, and Szegedy, Christian. 2014b. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572.
Goyal, Palash, and Ferrara, Emilio. 2018. Graph embedding techniques, applications,

and performance: A survey. Knowledge-Based Systems, 151, 78–94.
Grover, Aditya, and Leskovec, Jure. 2016. node2vec: Scalable feature learning for net-

works. Pages 855–864 of: Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM.

Gu, Quanquan, and Han, Jiawei. 2011. Towards feature selection in network. Pages
1175–1184 of: Proceedings of the 20th ACM international conference on Infor-
mation and knowledge management.

Gu, Yupeng, Sun, Yizhou, Li, Yanen, and Yang, Yang. 2018. Rare: Social rank regu-
lated large-scale network embedding. Pages 359–368 of: Proceedings of the 2018
World Wide Web Conference.

Guo, Zhijiang, Zhang, Yan, and Lu, Wei. 2019. Attention Guided Graph Convolutional
Networks for Relation Extraction. arXiv preprint arXiv:1906.07510.

Gutmann, Michael U, and Hyvärinen, Aapo. 2012. Noise-contrastive estimation of un-
normalized statistical models, with applications to natural image statistics. Jour-
nal of Machine Learning Research, 13(Feb), 307–361.

Hagberg, Aric, Swart, Pieter, and S Chult, Daniel. 2008. Exploring network struc-
ture, dynamics, and function using NetworkX. Tech. rept. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

294 Bibliography

Hamaguchi, Takuo, Oiwa, Hidekazu, Shimbo, Masashi, and Matsumoto, Yuji. 2017.
Knowledge transfer for out-of-knowledge-base entities: a graph neural network
approach. Pages 1802–1808 of: Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence. AAAI Press.

Hamilton, Will, Ying, Zhitao, and Leskovec, Jure. 2017a. Inductive representation
learning on large graphs. Pages 1024–1034 of: Advances in Neural Information
Processing Systems.

Hamilton, William L, Ying, Rex, and Leskovec, Jure. 2017b. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.

Han, Jiangfan, Luo, Ping, and Wang, Xiaogang. 2019. Deep self-learning from noisy
labels. Pages 5138–5147 of: Proceedings of the IEEE International Conference
on Computer Vision.

Han, Jiawei, Pei, Jian, and Kamber, Micheline. 2011. Data mining: concepts and tech-
niques. Elsevier.

He, Chaoyang, Xie, Tian, Rong, Yu, Huang, Wenbing, Li, Yanfang, Huang, Junzhou,
Ren, Xiang, and Shahabi, Cyrus. 2019. Bipartite Graph Neural Networks for
Efficient Node Representation Learning. arXiv preprint arXiv:1906.11994.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. 2016. Deep residual
learning for image recognition. Pages 770–778 of: Proceedings of the IEEE con-
ference on computer vision and pattern recognition.

Heider, Fritz. 1946. Attitudes and cognitive organization. The Journal of psychology,
21(1), 107–112.

Hochreiter, Sepp, and Schmidhuber, Jürgen. 1997. Long short-term memory. Neural
computation, 9(8), 1735–1780.

Hoffman, Kenneth, and Kunze, Ray. Linear algebra. 1971. Englewood Cliffs, New
Jersey.

Hu, Weihua, Liu, Bowen, Gomes, Joseph, Zitnik, Marinka, Liang, Percy, Pande, Vijay,
and Leskovec, Jure. 2019. Pre-training graph neural networks. arXiv preprint
arXiv:1905.12265.

Hu, Ziniu, Dong, Yuxiao, Wang, Kuansan, Chang, Kai-Wei, and Sun, Yizhou. 2020.
GPT-GNN: Generative Pre-Training of Graph Neural Networks. arXiv preprint
arXiv:2006.15437.

Huang, Qiang, Xia, Tingyu, Sun, Huiyan, Yamada, Makoto, and Chang, Yi. 2020.
Unsupervised Nonlinear Feature Selection from High-Dimensional Signed Net-
works. Pages 4182–4189 of: AAAI.

Huang, Wenbing, Zhang, Tong, Rong, Yu, and Huang, Junzhou. 2018. Adaptive sam-
pling towards fast graph representation learning. Pages 4558–4567 of: Advances
in Neural Information Processing Systems.

Ioffe, Sergey, and Szegedy, Christian. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

Jeong, Dasaem, Kwon, Taegyun, Kim, Yoojin, and Nam, Juhan. 2019. Graph neural
network for music score data and modeling expressive piano performance. Pages
3060–3070 of: International Conference on Machine Learning.

Jiang, Jianwen, Wei, Yuxuan, Feng, Yifan, Cao, Jingxuan, and Gao, Yue. 2019. Dy-
namic Hypergraph Neural Networks. Pages 2635–2641 of: IJCAI.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 295

Jin, Hongwei, and Zhang, Xinhua. Latent adversarial training of graph convolution
networks.

Jin, Wei, Li, Yaxin, Xu, Han, Wang, Yiqi, and Tang, Jiliang. 2020a. Adversarial At-
tacks and Defenses on Graphs: A Review and Empirical Study. arXiv preprint
arXiv:2003.00653.

Jin, Wei, Ma, Yao, Liu, Xiaorui, Tang, Xianfeng, Wang, Suhang, and Tang, Jiliang.
2020b. Graph Structure Learning for Robust Graph Neural Networks. arXiv
preprint arXiv:2005.10203.

Jin, Wei, Derr, Tyler, Liu, Haochen, Wang, Yiqi, Wang, Suhang, Liu, Zitao, and Tang,
Jiliang. 2020c. Self-supervised Learning on Graphs: Deep Insights and New Di-
rection. arXiv preprint arXiv:2006.10141.

Jin, Wengong, Barzilay, Regina, and Jaakkola, Tommi. 2018. Junction tree variational
autoencoder for molecular graph generation. arXiv preprint arXiv:1802.04364.

Joshi, Chaitanya K, Laurent, Thomas, and Bresson, Xavier. 2019. An efficient graph
convolutional network technique for the travelling salesman problem. arXiv
preprint arXiv:1906.01227.

Joyce, James M. 2011. Kullback-Leibler Divergence.
Jurafsky, Daniel, and Martin, James H. Speech and Language Processing: An Intro-

duction to Natural Language Processing, Computational Linguistics, and Speech
Recognition.

Kamath, Uday, Liu, John, and Whitaker, James. 2019. Deep learning for nlp and speech
recognition. Vol. 84. Springer.

Kampffmeyer, Michael, Chen, Yinbo, Liang, Xiaodan, Wang, Hao, Zhang, Yujia, and
Xing, Eric P. 2019. Rethinking knowledge graph propagation for zero-shot learn-
ing. Pages 11487–11496 of: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Kana, Rajesh K, Uddin, Lucina Q, Kenet, Tal, Chugani, Diane, and Müller, Ralph-Axel.
2014. Brain connectivity in autism. Frontiers in Human Neuroscience, 8, 349.

Karypis, George, and Kumar, Vipin. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1),
359–392.

Khademi, Mahmoud, and Schulte, Oliver. 2020. Deep Generative Probabilistic Graph
Neural Networks for Scene Graph Generation. Pages 11237–11245 of: AAAI.

Khalil, Elias, Dai, Hanjun, Zhang, Yuyu, Dilkina, Bistra, and Song, Le. 2017. Learning
combinatorial optimization algorithms over graphs. Pages 6348–6358 of: Ad-
vances in Neural Information Processing Systems.

Kingma, Diederik P, and Ba, Jimmy. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980.

Kingma, Diederik P, and Welling, Max. 2013. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

Kipf, Thomas, Fetaya, Ethan, Wang, Kuan-Chieh, Welling, Max, and Zemel, Richard.
2018. Neural relational inference for interacting systems. arXiv preprint
arXiv:1802.04687.

Kipf, Thomas N, and Welling, Max. 2016a. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

Kipf, Thomas N, and Welling, Max. 2016b. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

296 Bibliography

Koren, Yehuda, Bell, Robert, and Volinsky, Chris. 2009. Matrix factorization techniques
for recommender systems. Computer, 42(8), 30–37.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. 2012. Imagenet classifica-
tion with deep convolutional neural networks. Pages 1097–1105 of: Advances in
neural information processing systems.

Kuhn, Michael, Letunic, Ivica, Jensen, Lars Juhl, and Bork, Peer. 2016. The SIDER
database of drugs and side effects. Nucleic acids research, 44(D1), D1075–
D1079.

Kunegis, Jérôme, Lommatzsch, Andreas, and Bauckhage, Christian. 2009. The slashdot
zoo: mining a social network with negative edges. Pages 741–750 of: Proceedings
of the 18th international conference on World wide web. ACM.

Lai, Yi-An, Hsu, Chin-Chi, Chen, Wen Hao, Yeh, Mi-Yen, and Lin, Shou-De. 2017.
Prune: Preserving proximity and global ranking for network embedding. Pages
5257–5266 of: Advances in neural information processing systems.

Le Cun, Yann, and Fogelman-Soulié, Françoise. 1987. Modèles connexionnistes de
l’apprentissage. Intellectica, 2(1), 114–143.

Lee, John Boaz, Rossi, Ryan, and Kong, Xiangnan. 2018. Graph classification using
structural attention. Pages 1666–1674 of: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

Lee, Junhyun, Lee, Inyeop, and Kang, Jaewoo. 2019. Self-Attention Graph Pooling.
Pages 3734–3743 of: Chaudhuri, Kamalika, and Salakhutdinov, Ruslan (eds),
Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA. Proceedings of Machine
Learning Research, vol. 97. PMLR.

Lee, Kenton, He, Luheng, Lewis, Mike, and Zettlemoyer, Luke. 2017. End-to-end
neural coreference resolution. arXiv preprint arXiv:1707.07045.

Leskovec, Jure, and Krevl, Andrej. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection.

Leskovec, Jure, and Sosič, Rok. 2016. SNAP: A General-Purpose Network Analysis
and Graph-Mining Library. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 8(1), 1.

Leskovec, Jure, Huttenlocher, Daniel, and Kleinberg, Jon. 2010a. Predicting positive
and negative links in online social networks. Pages 641–650 of: Proceedings of
the 19th international conference on World wide web. ACM.

Leskovec, Jure, Huttenlocher, Daniel, and Kleinberg, Jon. 2010b. Signed networks in
social media. Pages 1361–1370 of: Proceedings of the SIGCHI conference on
human factors in computing systems. ACM.

Li, Chang, and Goldwasser, Dan. 2019. Encoding Social Information with Graph Con-
volutional Networks forPolitical Perspective Detection in News Media. Pages
2594–2604 of: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics.

Li, Chaolong, Cui, Zhen, Zheng, Wenming, Xu, Chunyan, and Yang, Jian. 2018a.
Spatio-temporal graph convolution for skeleton based action recognition. In:
Thirty-Second AAAI Conference on Artificial Intelligence.

Li, Chunyan, Liu, Hongju, Hu, Qian, Que, Jinlong, and Yao, Junfeng. 2019a. A novel
computational model for predicting microRNA–disease associations based on het-
erogeneous graph convolutional networks. Cells, 8(9), 977.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 297

Li, Jundong, Hu, Xia, Jian, Ling, and Liu, Huan. 2016. Toward time-evolving feature
selection on dynamic networks. Pages 1003–1008 of: 2016 IEEE 16th Interna-
tional Conference on Data Mining (ICDM). IEEE.

Li, Jundong, Dani, Harsh, Hu, Xia, Tang, Jiliang, Chang, Yi, and Liu, Huan. 2017a.
Attributed network embedding for learning in a dynamic environment. Pages
387–396 of: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management. ACM.

Li, Jundong, Cheng, Kewei, Wang, Suhang, Morstatter, Fred, Trevino, Robert P, Tang,
Jiliang, and Liu, Huan. 2017b. Feature selection: A data perspective. ACM Com-
puting Surveys (CSUR), 50(6), 1–45.

Li, Jundong, Guo, Ruocheng, Liu, Chenghao, and Liu, Huan. 2019b. Adaptive unsu-
pervised feature selection on attributed networks. Pages 92–100 of: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining.

Li, Maosen, Chen, Siheng, Chen, Xu, Zhang, Ya, Wang, Yanfeng, and Tian, Qi. 2019c.
Actional-Structural Graph Convolutional Networks for Skeleton-based Action
Recognition. Pages 3595–3603 of: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition.

Li, Qimai, Han, Zhichao, and Wu, Xiao-Ming. 2018b. Deeper Insights Into Graph
Convolutional Networks for Semi-Supervised Learning. Pages 3538–3545 of:
McIlraith, Sheila A., and Weinberger, Kilian Q. (eds), Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innova-
tive Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Sympo-
sium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018. AAAI Press.

Li, Ruoyu, Wang, Sheng, Zhu, Feiyun, and Huang, Junzhou. 2018c. Adaptive graph
convolutional neural networks. In: Thirty-Second AAAI Conference on Artificial
Intelligence.

Li, Yaxin, Jin, Wei, Xu, Han, and Tang, Jiliang. 2020a. DeepRobust: A PyTorch Library
for Adversarial Attacks and Defenses. arXiv preprint arXiv:2005.06149.

Li, Ye, Sha, Chaofeng, Huang, Xin, and Zhang, Yanchun. 2018d. Community detection
in attributed graphs: An embedding approach. In: Thirty-Second AAAI Conference
on Artificial Intelligence.

Li, Yu, Tian, Yuan, Zhang, Jiawei, and Chang, Yi. 2020b. Learning Signed Network
Embedding via Graph Attention. In: Proceedings of the Thirty-Fourth AAAI Con-
ference on Artificial Intelligence.

Li, Yujia, Tarlow, Daniel, Brockschmidt, Marc, and Zemel, Richard. 2015. Gated graph
sequence neural networks. arXiv preprint arXiv:1511.05493.

Li, Zhuwen, Chen, Qifeng, and Koltun, Vladlen. 2018e. Combinatorial optimization
with graph convolutional networks and guided tree search. Pages 539–548 of:
Advances in Neural Information Processing Systems.

Liang, Xiaodan, Shen, Xiaohui, Feng, Jiashi, Lin, Liang, and Yan, Shuicheng. 2016. Se-
mantic object parsing with graph lstm. Pages 125–143 of: European Conference
on Computer Vision. Springer.

Liao, Renjie, Li, Yujia, Song, Yang, Wang, Shenlong, Hamilton, Will, Duvenaud,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

298 Bibliography

David K, Urtasun, Raquel, and Zemel, Richard. 2019. Efficient graph genera-
tion with graph recurrent attention networks. Pages 4255–4265 of: Advances in
Neural Information Processing Systems.

Liben-Nowell, David, and Kleinberg, Jon. 2007. The link-prediction problem for social
networks. Journal of the American society for information science and technol-
ogy, 58(7), 1019–1031.

Lin, Yankai, Liu, Zhiyuan, Sun, Maosong, Liu, Yang, and Zhu, Xuan. 2015. Learning
entity and relation embeddings for knowledge graph completion. In: Twenty-ninth
AAAI conference on artificial intelligence.

Ling, Huan, Gao, Jun, Kar, Amlan, Chen, Wenzheng, and Fidler, Sanja. 2019. Fast
interactive object annotation with curve-gcn. Pages 5257–5266 of: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.

Liu, Huan, and Motoda, Hiroshi. 2007. Computational methods of feature selection.
CRC Press.

Liu, Huan, and Motoda, Hiroshi. 2012. Feature selection for knowledge discovery and
data mining. Vol. 454. Springer Science & Business Media.

Liu, Ke, Sun, Xiangyan, Jia, Lei, Ma, Jun, Xing, Haoming, Wu, Junqiu, Gao, Hua, Sun,
Yax, Boulnois, Florian, and Fan, Jie. 2018a. Chemi-net: a graph convolutional
network for accurate drug property prediction. arXiv preprint arXiv:1803.06236.

Liu, Qi, Nickel, Maximilian, and Kiela, Douwe. 2019a. Hyperbolic graph neural net-
works. Pages 8230–8241 of: Advances in Neural Information Processing Systems.

Liu, Zhiwei, Dou, Yingtong, Yu, Philip S, Deng, Yutong, and Peng, Hao. 2020. Alle-
viating the Inconsistency Problem of Applying Graph Neural Network to Fraud
Detection. arXiv preprint arXiv:2005.00625.

Liu, Ziqi, Chen, Chaochao, Yang, Xinxing, Zhou, Jun, Li, Xiaolong, and Song, Le.
2018b. Heterogeneous graph neural networks for malicious account detection.
Pages 2077–2085 of: Proceedings of the 27th ACM International Conference on
Information and Knowledge Management.

Liu, Ziqi, Chen, Chaochao, Li, Longfei, Zhou, Jun, Li, Xiaolong, Song, Le, and Qi,
Yuan. 2019b. Geniepath: Graph neural networks with adaptive receptive paths.
Pages 4424–4431 of: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 33.

Ma, Lingxiao, Yang, Zhi, Miao, Youshan, Xue, Jilong, Wu, Ming, Zhou, Lidong, and
Dai, Yafei. 2018a. Towards efficient large-scale graph neural network computing.
arXiv preprint arXiv:1810.08403.

Ma, Lingxiao, Yang, Zhi, Miao, Youshan, Xue, Jilong, Wu, Ming, Zhou, Lidong,
and Dai, Yafei. 2019a. Neugraph: parallel deep neural network computation on
large graphs. Pages 443–458 of: 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19).

Ma, Tengfei, Chen, Jie, and Xiao, Cao. 2018b. Constrained generation of semanti-
cally valid graphs via regularizing variational autoencoders. Pages 7113–7124 of:
Advances in Neural Information Processing Systems.

Ma, Tengfei, Xiao, Cao, Zhou, Jiayu, and Wang, Fei. 2018c. Drug similarity in-
tegration through attentive multi-view graph auto-encoders. arXiv preprint
arXiv:1804.10850.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 299

Ma, Yao, Wang, Suhang, Ren, ZhaoChun, Yin, Dawei, and Tang, Jiliang. 2017. Pre-
serving local and global information for network embedding. arXiv preprint
arXiv:1710.07266.

Ma, Yao, Ren, Zhaochun, Jiang, Ziheng, Tang, Jiliang, and Yin, Dawei. 2018d. Multi-
dimensional network embedding with hierarchical structure. Pages 387–395 of:
Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining.

Ma, Yao, Wang, Suhang, Aggarwal, Charu C., and Tang, Jiliang. 2019b. Graph Convo-
lutional Networks with EigenPooling. Pages 723–731 of: Teredesai, Ankur, Ku-
mar, Vipin, Li, Ying, Rosales, Rómer, Terzi, Evimaria, and Karypis, George (eds),
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019.
ACM.

Ma, Yao, Wang, Suhang, Aggarwal, Chara C, Yin, Dawei, and Tang, Jiliang. 2019c.
Multi-dimensional Graph Convolutional Networks. Pages 657–665 of: Proceed-
ings of the 2019 SIAM International Conference on Data Mining. SIAM.

Ma, Yao, Wang, Suhang, Derr, Tyler, Wu, Lingfei, and Tang, Jiliang. 2020a. Attacking
Graph Convolutional Networks via Rewiring.

Ma, Yao, Guo, Ziyi, Ren, Zhaocun, Tang, Jiliang, and Yin, Dawei. 2020b. Streaming
graph neural networks. Pages 719–728 of: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.

Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y. 2013. Rectifier nonlineari-
ties improve neural network acoustic models. In: in ICML Workshop on Deep
Learning for Audio, Speech and Language Processing. Citeseer.

Marcheggiani, Diego, and Titov, Ivan. 2017. Encoding Sentences with Graph Convolu-
tional Networks for Semantic Role Labeling. Pages 1506–1515 of: Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing.

Marcheggiani, Diego, Bastings, Joost, and Titov, Ivan. 2018. Exploiting Semantics in
Neural Machine Translation with Graph Convolutional Networks. Pages 486–
492 of: Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers).

McCulloch, Warren S, and Pitts, Walter. 1943. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4), 115–133.

Menon, Aditya Krishna, and Elkan, Charles. 2011. Link prediction via matrix factor-
ization. Pages 437–452 of: Joint european conference on machine learning and
knowledge discovery in databases. Springer.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg S, and Dean, Jeff. 2013.
Distributed representations of words and phrases and their compositionality.
Pages 3111–3119 of: Advances in neural information processing systems.

Miller, George A. 1998. WordNet: An electronic lexical database. MIT press.
Mishra, Pushkar, Del Tredici, Marco, Yannakoudakis, Helen, and Shutova, Ekaterina.

2019. Abusive Language Detection with Graph Convolutional Networks. Pages
2145–2150 of: Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers).

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

300 Bibliography

Miwa, Makoto, and Bansal, Mohit. 2016. End-to-end relation extraction using lstms on
sequences and tree structures. arXiv preprint arXiv:1601.00770.

Monti, Federico, Bronstein, Michael, and Bresson, Xavier. 2017. Geometric matrix
completion with recurrent multi-graph neural networks. Pages 3697–3707 of:
Advances in Neural Information Processing Systems.

Monti, Federico, Frasca, Fabrizio, Eynard, Davide, Mannion, Damon, and Bronstein,
Michael M. 2019. Fake news detection on social media using geometric deep
learning. arXiv preprint arXiv:1902.06673.

Morin, Frederic, and Bengio, Yoshua. 2005. Hierarchical probabilistic neural network
language model. Pages 246–252 of: Aistats, vol. 5. Citeseer.

Morris, Christopher, Ritzert, Martin, Fey, Matthias, Hamilton, William L, Lenssen,
Jan Eric, Rattan, Gaurav, and Grohe, Martin. 2019. Weisfeiler and leman go
neural: Higher-order graph neural networks. Pages 4602–4609 of: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33.

Nastase, Vivi, Mihalcea, Rada, and Radev, Dragomir R. 2015. A survey of graphs in
natural language processing. Natural Language Engineering, 21(5), 665–698.

Nathani, Deepak, Chauhan, Jatin, Sharma, Charu, and Kaul, Manohar. 2019. Learning
Attention-based Embeddings for Relation Prediction in Knowledge Graphs. Pages
4710–4723 of: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics.

Neville, Jennifer, and Jensen, David. Iterative classification in relational data.
Newman, Mark. 2018. Networks: An Introduction. Oxford university press.
Newman, Mark EJ. 2006. Modularity and community structure in networks. Proceed-

ings of the national academy of sciences, 103(23), 8577–8582.
Ng, Andrew, et al. Sparse autoencoder.
Ng, Andrew Y, Jordan, Michael I, and Weiss, Yair. 2002. On spectral clustering: Anal-

ysis and an algorithm. Pages 849–856 of: Advances in neural information pro-
cessing systems.

Nguyen, Giang Hoang, Lee, John Boaz, Rossi, Ryan A, Ahmed, Nesreen K, Koh, Eu-
nyee, and Kim, Sungchul. 2018. Continuous-time dynamic network embeddings.
Pages 969–976 of: Companion Proceedings of the The Web Conference 2018.

Nguyen, Thin, Le, Hang, and Venkatesh, Svetha. 2019. GraphDTA: prediction of drug–
target binding affinity using graph convolutional networks. BioRxiv, 684662.

Nickel, Maximilian, Murphy, Kevin, Tresp, Volker, and Gabrilovich, Evgeniy. 2015. A
review of relational machine learning for knowledge graphs. Proceedings of the
IEEE, 104(1), 11–33.

Niepert, Mathias, Ahmed, Mohamed, and Kutzkov, Konstantin. 2016. Learning convo-
lutional neural networks for graphs. Pages 2014–2023 of: International confer-
ence on machine learning.

Norcliffe-Brown, Will, Vafeias, Stathis, and Parisot, Sarah. 2018. Learning conditioned
graph structures for interpretable visual question answering. Pages 8334–8343 of:
Advances in Neural Information Processing Systems.

Nwankpa, Chigozie, Ijomah, Winifred, Gachagan, Anthony, and Marshall, Stephen.
2018. Activation functions: Comparison of trends in practice and research for
deep learning. arXiv preprint arXiv:1811.03378.

Olshausen, Bruno A, and Field, David J. 1997. Sparse coding with an overcomplete
basis set: A strategy employed by V1? Vision research, 37(23), 3311–3325.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 301

Oono, Kenta, and Suzuki, Taiji. 2020. Graph Neural Networks Exponentially Lose Ex-
pressive Power for Node Classification. In: International Conference on Learning
Representations.

Ou, Mingdong, Cui, Peng, Pei, Jian, Zhang, Ziwei, and Zhu, Wenwu. 2016. Asymmet-
ric transitivity preserving graph embedding. Pages 1105–1114 of: Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining.

Owen, Art B. 2013. Monte Carlo theory, methods and examples.
Pan, Shirui, Hu, Ruiqi, Long, Guodong, Jiang, Jing, Yao, Lina, and Zhang, Chengqi.

2018. Adversarially regularized graph autoencoder for graph embedding. arXiv
preprint arXiv:1802.04407.

Pareja, Aldo, Domeniconi, Giacomo, Chen, Jie, Ma, Tengfei, Suzumura, Toyotaro,
Kanezashi, Hiroki, Kaler, Tim, and Leisersen, Charles E. 2019. Evolvegcn:
Evolving graph convolutional networks for dynamic graphs. arXiv preprint
arXiv:1902.10191.

Parisot, Sarah, Ktena, Sofia Ira, Ferrante, Enzo, Lee, Matthew, Guerrero, Ricardo,
Glocker, Ben, and Rueckert, Daniel. 2018. Disease prediction using graph con-
volutional networks: Application to Autism Spectrum Disorder and Alzheimer’s
disease. Medical image analysis, 48, 117–130.

Park, Namyong, Kan, Andrey, Dong, Xin Luna, Zhao, Tong, and Faloutsos, Christos.
2019. Estimating node importance in knowledge graphs using graph neural net-
works. Pages 596–606 of: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining.

Paszke, Adam, Gross, Sam, Chintala, Soumith, Chanan, Gregory, Yang, Edward, De-
Vito, Zachary, Lin, Zeming, Desmaison, Alban, Antiga, Luca, and Lerer, Adam.
2017. Automatic differentiation in PyTorch.

Peixoto, Tiago P. 2014. The graph-tool python library. figshare.
Peng, Zhen, Dong, Yixiang, Luo, Minnan, Wu, Xiao-Ming, and Zheng, Qinghua. 2020.

Self-Supervised Graph Representation Learning via Global Context Prediction.
arXiv preprint arXiv:2003.01604.

Perozzi, Bryan, Al-Rfou, Rami, and Skiena, Steven. 2014. Deepwalk: Online learn-
ing of social representations. Pages 701–710 of: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM.

Perraudin, Nathanaël, Paratte, Johan, Shuman, David, Martin, Lionel, Kalofolias, Vas-
silis, Vandergheynst, Pierre, and Hammond, David K. 2014. GSPBOX: A toolbox
for signal processing on graphs. arXiv preprint arXiv:1408.5781.

Perron, Oskar. 1907. Zur theorie der matrices. Mathematische Annalen, 64(2), 248–
263.

Peters, Matthew E, Neumann, Mark, Iyyer, Mohit, Gardner, Matt, Clark, Christopher,
Lee, Kenton, and Zettlemoyer, Luke. 2018. Deep contextualized word represen-
tations. arXiv preprint arXiv:1802.05365.

Pillai, S Unnikrishna, Suel, Torsten, and Cha, Seunghun. 2005. The Perron-Frobenius
theorem: some of its applications. IEEE Signal Processing Magazine, 22(2), 62–
75.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

302 Bibliography

Qi, Yanlin, Li, Qi, Karimian, Hamed, and Liu, Di. 2019. A hybrid model for spatiotem-
poral forecasting of PM2. 5 based on graph convolutional neural network and long
short-term memory. Science of the Total Environment, 664, 1–10.

Qiu, Jiezhong, Tang, Jian, Ma, Hao, Dong, Yuxiao, Wang, Kuansan, and Tang, Jie.
2018a. Deepinf: Social influence prediction with deep learning. Pages 2110–
2119 of: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining.

Qiu, Jiezhong, Dong, Yuxiao, Ma, Hao, Li, Jian, Wang, Kuansan, and Tang, Jie. 2018b.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. Pages 459–467 of: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining. ACM.

Radford, Alec, Wu, Jeff, Child, Rewon, Luan, David, Amodei, Dario, and Sutskever,
Ilya. 2019. Language Models are Unsupervised Multitask Learners.

Ren, Kui, Zheng, Tianhang, Qin, Zhan, and Liu, Xue. 2020. Adversarial attacks and
defenses in deep learning. Engineering.

Resnick, Paul, and Varian, Hal R. 1997. Recommender systems. Communications of
the ACM, 40(3), 56–58.

Ribeiro, Leonardo FR, Saverese, Pedro HP, and Figueiredo, Daniel R. 2017. struc2vec:
Learning node representations from structural identity. Pages 385–394 of: Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. ACM.

Rong, Yu, Huang, Wenbing, Xu, Tingyang, and Huang, Junzhou. 2019. Dropedge: To-
wards deep graph convolutional networks on node classification. In: International
Conference on Learning Representations.

Rong, Yu, Huang, Wenbing, Xu, Tingyang, and Huang, Junzhou. 2020. DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification. In: Inter-
national Conference on Learning Representations.

Rosenblatt, Frank. 1958. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6), 386.

Rossi, Ryan A., and Ahmed, Nesreen K. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. In: Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence.

Rossi, Ryan A, Ahmed, Nesreen K, Koh, Eunyee, Kim, Sungchul, Rao, Anup, and
Yadkori, Yasin Abbasi. 2018. HONE: higher-order network embeddings. arXiv
preprint arXiv:1801.09303.

Roweis, Sam T, and Saul, Lawrence K. 2000. Nonlinear dimensionality reduction by
locally linear embedding. science, 290(5500), 2323–2326.

Rumelhart, David E, Hinton, Geoffrey E, and Williams, Ronald J. 1986. Learning
representations by back-propagating errors. nature, 323(6088), 533–536.

Rusek, Krzysztof, Suárez-Varela, José, Mestres, Albert, Barlet-Ros, Pere, and Cabellos-
Aparicio, Albert. 2019. Unveiling the potential of Graph Neural Networks for
network modeling and optimization in SDN. Pages 140–151 of: Proceedings of
the 2019 ACM Symposium on SDN Research.

Sahu, Sunil Kumar, Christopoulou, Fenia, Miwa, Makoto, and Ananiadou, Sophia.
2019. Inter-sentence Relation Extraction with Document-level Graph Convolu-
tional Neural Network. arXiv preprint arXiv:1906.04684.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 303

Sailer, Lee Douglas. 1978. Structural equivalence: Meaning and definition, computation
and application. Social Networks, 1(1), 73–90.

Salvador, Stan, and Chan, Philip. 2007. Toward accurate dynamic time warping in
linear time and space. Intelligent Data Analysis, 11(5), 561–580.

Sankar, Aravind, Wu, Yanhong, Gou, Liang, Zhang, Wei, and Yang, Hao. 2018. Dy-
namic graph representation learning via self-attention networks. arXiv preprint
arXiv:1812.09430.

Scarselli, Franco, Yong, Sweah Liang, Gori, Marco, Hagenbuchner, Markus, Tsoi,
Ah Chung, and Maggini, Marco. 2005. Graph neural networks for ranking web
pages. Pages 666–672 of: Proceedings of the 2005 IEEE/WIC/ACM International
Conference on Web Intelligence. IEEE Computer Society.

Scarselli, Franco, Gori, Marco, Tsoi, Ah Chung, Hagenbuchner, Markus, and Monfar-
dini, Gabriele. 2008. The graph neural network model. IEEE Transactions on
Neural Networks, 20(1), 61–80.

Schlichtkrull, Michael, Kipf, Thomas N, Bloem, Peter, Van Den Berg, Rianne, Titov,
Ivan, and Welling, Max. 2018. Modeling relational data with graph convolutional
networks. Pages 593–607 of: European Semantic Web Conference. Springer.

Seide, Frank, Li, Gang, and Yu, Dong. 2011. Conversational speech transcription using
context-dependent deep neural networks. In: Twelfth annual conference of the
international speech communication association.

Sen, Prithviraj, Namata, Galileo, Bilgic, Mustafa, Getoor, Lise, Galligher, Brian, and
Eliassi-Rad, Tina. 2008. Collective classification in network data. AI magazine,
29(3), 93–93.

Shang, Chao, Tang, Yun, Huang, Jing, Bi, Jinbo, He, Xiaodong, and Zhou, Bowen.
2019a. End-to-end structure-aware convolutional networks for knowledge base
completion. Pages 3060–3067 of: Proceedings of the AAAI Conference on Artifi-
cial Intelligence, vol. 33.

Shang, Junyuan, Xiao, Cao, Ma, Tengfei, Li, Hongyan, and Sun, Jimeng. 2019b.
Gamenet: Graph augmented memory networks for recommending medication
combination. Pages 1126–1133 of: Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 33.

Shang, Junyuan, Ma, Tengfei, Xiao, Cao, and Sun, Jimeng. 2019c. Pre-training of
graph augmented transformers for medication recommendation. arXiv preprint
arXiv:1906.00346.

Shchur, Oleksandr, and Günnemann, Stephan. 2019. Overlapping community detection
with graph neural networks. arXiv preprint arXiv:1909.12201.

Shi, Chuan, Hu, Binbin, Zhao, Wayne Xin, and Philip, S Yu. 2018a. Heterogeneous
information network embedding for recommendation. IEEE Transactions on
Knowledge and Data Engineering, 31(2), 357–370.

Shi, Jianbo, and Malik, Jitendra. 2000. Normalized cuts and image segmentation. IEEE
Transactions on pattern analysis and machine intelligence, 22(8), 888–905.

Shi, Lei, Zhang, Yifan, Cheng, Jian, and Lu, Hanqing. 2019a. Skeleton-Based Action
Recognition with Directed Graph Neural Networks. Pages 7912–7921 of: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Shi, Lei, Zhang, Yifan, Cheng, Jian, and Lu, Hanqing. 2019b. Two-stream adap-
tive graph convolutional networks for skeleton-based action recognition. Pages

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

304 Bibliography

12026–12035 of: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.

Shi, Yu, Han, Fangqiu, He, Xinwei, He, Xinran, Yang, Carl, Luo, Jie, and Han, Jiawei.
2018b. mvn2vec: Preservation and collaboration in multi-view network embed-
ding. arXiv preprint arXiv:1801.06597.

Shuman, David I, Narang, Sunil K, Frossard, Pascal, Ortega, Antonio, and Van-
dergheynst, Pierre. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE signal processing magazine, 30(3), 83–98.

Si, Chenyang, Jing, Ya, Wang, Wei, Wang, Liang, and Tan, Tieniu. 2018. Skeleton-
based action recognition with spatial reasoning and temporal stack learning.
Pages 103–118 of: Proceedings of the European Conference on Computer Vision
(ECCV).

Si, Chenyang, Chen, Wentao, Wang, Wei, Wang, Liang, and Tan, Tieniu. 2019. An
attention enhanced graph convolutional lstm network for skeleton-based action
recognition. Pages 1227–1236 of: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition.

Simonovsky, Martin, and Komodakis, Nikos. 2017. Dynamic edge-conditioned filters
in convolutional neural networks on graphs. Pages 3693–3702 of: Proceedings of
the IEEE conference on computer vision and pattern recognition.

Simonovsky, Martin, and Komodakis, Nikos. 2018. Graphvae: Towards generation of
small graphs using variational autoencoders. Pages 412–422 of: International
Conference on Artificial Neural Networks. Springer.

Simonyan, Karen, and Zisserman, Andrew. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Song, Linfeng, Peng, Xiaochang, Zhang, Yue, Wang, Zhiguo, and Gildea, Daniel. 2017.
Amr-to-text generation with synchronous node replacement grammar. arXiv
preprint arXiv:1702.00500.

Song, Linfeng, Wang, Zhiguo, Yu, Mo, Zhang, Yue, Florian, Radu, and Gildea, Daniel.
2018a. Exploring graph-structured passage representation for multi-hop reading
comprehension with graph neural networks. arXiv preprint arXiv:1809.02040.

Song, Linfeng, Zhang, Yue, Wang, Zhiguo, and Gildea, Daniel. 2018b. A graph-to-
sequence model for AMR-to-text generation. arXiv preprint arXiv:1805.02473.

Song, Linfeng, Zhang, Yue, Wang, Zhiguo, and Gildea, Daniel. 2018c. N-ary relation
extraction using graph state lstm. arXiv preprint arXiv:1808.09101.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhut-
dinov, Ruslan. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1), 1929–1958.

Sun, Changzhi, Gong, Yeyun, Wu, Yuanbin, Gong, Ming, Jiang, Daxin, Lan, Man, Sun,
Shiliang, and Duan, Nan. 2019a. Joint type inference on entities and relations
via graph convolutional networks. Pages 1361–1370 of: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.

Sun, Fan-Yun, Hoffmann, Jordan, and Tang, Jian. 2019b. InfoGraph: Unsupervised and
Semi-supervised Graph-Level Representation Learning via Mutual Information
Maximization. arXiv preprint arXiv:1908.01000.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 305

Sun, Ke, Lin, Zhouchen, and Zhu, Zhanxing. 2019c. Multi-Stage Self-Supervised
Learning for Graph Convolutional Networks on Graphs with Few Labels. arXiv
preprint arXiv:1902.11038.

Sundararajan, Mukund, Taly, Ankur, and Yan, Qiqi. 2017. Axiomatic attribution for
deep networks. Pages 3319–3328 of: Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70. JMLR. org.

Sutskever, I, Vinyals, O, and Le, QV. 2014. Sequence to sequence learning with neural
networks. Advances in NIPS.

Sutton, Richard S, McAllester, David A, Singh, Satinder P, and Mansour, Yishay. 2000.
Policy gradient methods for reinforcement learning with function approximation.
Pages 1057–1063 of: Advances in neural information processing systems.

Szegedy, Christian, Vanhoucke, Vincent, Ioffe, Sergey, Shlens, Jon, and Wojna, Zbig-
niew. 2016. Rethinking the inception architecture for computer vision. Pages
2818–2826 of: Proceedings of the IEEE conference on computer vision and pat-
tern recognition.

Tai, Kai Sheng, Socher, Richard, and Manning, Christopher D. 2015. Improved seman-
tic representations from tree-structured long short-term memory networks. arXiv
preprint arXiv:1503.00075.

Tan, Pang-Ning, Steinbach, Michael, and Kumar, Vipin. 2016. Introduction to data
mining. Pearson Education India.

Tang, Jian, Qu, Meng, Wang, Mingzhe, Zhang, Ming, Yan, Jun, and Mei, Qiaozhu.
2015. Line: Large-scale information network embedding. Pages 1067–1077 of:
Proceedings of the 24th international conference on world wide web. International
World Wide Web Conferences Steering Committee.

Tang, Jiliang, and Liu, Huan. 2012a. Feature selection with linked data in social media.
Pages 118–128 of: Proceedings of the 2012 SIAM International Conference on
Data Mining. SIAM.

Tang, Jiliang, and Liu, Huan. 2012b. Unsupervised feature selection for linked social
media data. Pages 904–912 of: Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining.

Tang, Jiliang, Gao, Huiji, Hu, Xia, and Liu, Huan. 2013a. Exploiting homophily effect
for trust prediction. Pages 53–62 of: Proceedings of the sixth ACM international
conference on Web search and data mining.

Tang, Jiliang, Hu, Xia, Gao, Huiji, and Liu, Huan. 2013b. Unsupervised feature selec-
tion for multi-view data in social media. Pages 270–278 of: Proceedings of the
2013 SIAM International Conference on Data Mining. SIAM.

Tang, Jiliang, Alelyani, Salem, and Liu, Huan. 2014a. Feature selection for classifica-
tion: A review. Data classification: Algorithms and applications, 37.

Tang, Jiliang, Hu, Xia, and Liu, Huan. 2014b. Is distrust the negation of trust? the
value of distrust in social media. Pages 148–157 of: Proceedings of the 25th ACM
conference on Hypertext and social media.

Tang, Jiliang, Aggarwal, Charu, and Liu, Huan. 2016a. Node classification in signed
social networks. Pages 54–62 of: Proceedings of the 2016 SIAM international
conference on data mining. SIAM.

Tang, Jiliang, Chang, Yi, Aggarwal, Charu, and Liu, Huan. 2016b. A survey of signed
network mining in social media. ACM Computing Surveys (CSUR), 49(3), 1–37.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

306 Bibliography

Tang, Lei, and Liu, Huan. 2009. Relational learning via latent social dimensions. Pages
817–826 of: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM.

Tang, Xianfeng, Li, Yandong, Sun, Yiwei, Yao, Huaxiu, Mitra, Prasenjit, and Wang,
Suhang. 2019. Robust graph neural network against poisoning attacks via transfer
learning. arXiv preprint arXiv:1908.07558.

Tang, Xianfeng, Yao, Huaxiu, Sun, Yiwei, Wang, Yiqi, Tang, Jiliang, Aggarwal, Charu,
Mitra, Prasenjit, and Wang, Suhang. 2020. Graph Convolutional Networks against
Degree-Related Biases. CIKM.

Tenenbaum, Joshua B, De Silva, Vin, and Langford, John C. 2000. A global geometric
framework for nonlinear dimensionality reduction. science, 290(5500), 2319–
2323.

Teney, Damien, Liu, Lingqiao, and van den Hengel, Anton. 2017. Graph-structured
representations for visual question answering. Pages 1–9 of: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

Trinajstic, Nenad. 2018. Chemical graph theory. Routledge.
Tu, Ke, Cui, Peng, Wang, Xiao, Wang, Fei, and Zhu, Wenwu. 2018. Structural deep

embedding for hyper-networks. In: Thirty-Second AAAI Conference on Artificial
Intelligence.

Tu, Ming, Wang, Guangtao, Huang, Jing, Tang, Yun, He, Xiaodong, and Zhou, Bowen.
2019. Multi-hop Reading Comprehension across Multiple Documents by Rea-
soning over Heterogeneous Graphs. Pages 2704–2713 of: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.

Vashishth, Shikhar, Sanyal, Soumya, Nitin, Vikram, and Talukdar, Partha. 2019.
Composition-based multi-relational graph convolutional networks. arXiv preprint
arXiv:1911.03082.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, Gomez,
Aidan N, Kaiser, Łukasz, and Polosukhin, Illia. 2017. Attention is all you need.
Pages 5998–6008 of: Advances in neural information processing systems.

Veličković, Petar, Cucurull, Guillem, Casanova, Arantxa, Romero, Adriana, Lio,
Pietro, and Bengio, Yoshua. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Velickovic, Petar, Fedus, William, Hamilton, William L, Liò, Pietro, Bengio, Yoshua,
and Hjelm, R Devon. 2019. Deep Graph Infomax. In: ICLR (Poster).

Vinyals, Oriol, and Le, Quoc. 2015. A neural conversational model. arXiv preprint
arXiv:1506.05869.

Vosoughi, Soroush, Roy, Deb, and Aral, Sinan. 2018. The spread of true and false news
online. Science, 359(6380), 1146–1151.

Wang, Daixin, Cui, Peng, and Zhu, Wenwu. 2016. Structural deep network embed-
ding. Pages 1225–1234 of: Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM.

Wang, Fei, Li, Tao, Wang, Xin, Zhu, Shenghuo, and Ding, Chris. 2011. Community
discovery using nonnegative matrix factorization. Data Mining and Knowledge
Discovery, 22(3), 493–521.

Wang, Hao, Xu, Tong, Liu, Qi, Lian, Defu, Chen, Enhong, Du, Dongfang, Wu, Han,

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 307

and Su, Wen. 2019a. MCNE: An End-to-End Framework for Learning Mul-
tiple Conditional Network Representations of Social Network. arXiv preprint
arXiv:1905.11013.

Wang, Hongwei, Wang, Jia, Wang, Jialin, Zhao, Miao, Zhang, Weinan, Zhang,
Fuzheng, Xie, Xing, and Guo, Minyi. 2018a. Graphgan: Graph representation
learning with generative adversarial nets. In: Thirty-Second AAAI Conference on
Artificial Intelligence.

Wang, Hongwei, Zhang, Fuzheng, Zhang, Mengdi, Leskovec, Jure, Zhao, Miao, Li,
Wenjie, and Wang, Zhongyuan. 2019b. Knowledge-aware graph neural networks
with label smoothness regularization for recommender systems. Pages 968–977
of: Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining.

Wang, Hongwei, Zhao, Miao, Xie, Xing, Li, Wenjie, and Guo, Minyi. 2019c. Knowl-
edge graph convolutional networks for recommender systems. Pages 3307–3313
of: The World Wide Web Conference. ACM.

Wang, Jianyu, Wen, Rui, Wu, Chunming, Huang, Yu, and Xion, Jian. 2019d. Fdgars:
Fraudster detection via graph convolutional networks in online app review sys-
tem. Pages 310–316 of: Companion Proceedings of The 2019 World Wide Web
Conference.

Wang, Minjie, Yu, Lingfan, Zheng, Da, Gan, Quan, Gai, Yu, Ye, Zihao, Li, Mufei, Zhou,
Jinjing, Huang, Qi, Ma, Chao, et al. 2019e. Deep graph library: Towards efficient
and scalable deep learning on graphs. arXiv preprint arXiv:1909.01315.

Wang, Peifeng, Han, Jialong, Li, Chenliang, and Pan, Rong. 2019f. Logic atten-
tion based neighborhood aggregation for inductive knowledge graph embedding.
Pages 7152–7159 of: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 33.

Wang, Suhang, Aggarwal, Charu, Tang, Jiliang, and Liu, Huan. 2017a. Attributed
signed network embedding. Pages 137–146 of: Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management.

Wang, Suhang, Tang, Jiliang, Aggarwal, Charu, Chang, Yi, and Liu, Huan. 2017b.
Signed network embedding in social media. Pages 327–335 of: Proceedings of
the 2017 SIAM international conference on data mining. SIAM.

Wang, Xiang, He, Xiangnan, Cao, Yixin, Liu, Meng, and Chua, Tat-Seng. 2019g.
KGAT: Knowledge Graph Attention Network for Recommendation. arXiv
preprint arXiv:1905.07854.

Wang, Xiang, He, Xiangnan, Wang, Meng, Feng, Fuli, and Chua, Tat-Seng. 2019h.
Neural graph collaborative filtering. Pages 165–174 of: Proceedings of the 42nd
international ACM SIGIR conference on Research and development in Informa-
tion Retrieval.

Wang, Xiao, Cui, Peng, Wang, Jing, Pei, Jian, Zhu, Wenwu, and Yang, Shiqiang. 2017c.
Community preserving network embedding. In: Thirty-first AAAI conference on
artificial intelligence.

Wang, Xiao, Ji, Houye, Shi, Chuan, Wang, Bai, Ye, Yanfang, Cui, Peng, and Yu,
Philip S. 2019i. Heterogeneous graph attention network. Pages 2022–2032 of:
The World Wide Web Conference.

Wang, Xiaolong, Ye, Yufei, and Gupta, Abhinav. 2018b. Zero-shot recognition via

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

308 Bibliography

semantic embeddings and knowledge graphs. Pages 6857–6866 of: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.

Wang, Xiaoyang, Ma, Yao, Wang, Yiqi, Jin, Wei, Wang, Xin, Tang, Jiliang, Jia, Caiyan,
and Yu, Jian. 2020a. Traffic Flow Prediction via Spatial Temporal Graph Neural
Network. Pages 1082–1092 of: Proceedings of The Web Conference 2020.

Wang, Xuhong, Du, Ying, Cui, Ping, and Yang, Yupu. 2020b. OCGNN: One-class
Classification with Graph Neural Networks. arXiv preprint arXiv:2002.09594.

Wang, Yaping, Jiao, Pengfei, Wang, Wenjun, Lu, Chunyu, Liu, Hongtao, and Wang, Bo.
2019j. Bipartite network embedding via effective integration of explicit and im-
plicit relations. Pages 435–451 of: International Conference on Database Systems
for Advanced Applications. Springer.

Wang, Yue, Sun, Yongbin, Liu, Ziwei, Sarma, Sanjay E, Bronstein, Michael M, and
Solomon, Justin M. 2019k. Dynamic graph cnn for learning on point clouds.
ACM Transactions on Graphics (TOG), 38(5), 1–12.

Wang, Zhichun, Lv, Qingsong, Lan, Xiaohan, and Zhang, Yu. 2018c. Cross-lingual
knowledge graph alignment via graph convolutional networks. Pages 349–357 of:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing.

Watkins, Christopher JCH, and Dayan, Peter. 1992. Q-learning. Machine learning,
8(3-4), 279–292.

Weber, Mark, Domeniconi, Giacomo, Chen, Jie, Weidele, Daniel Karl I, Bellei, Clau-
dio, Robinson, Tom, and Leiserson, Charles E. 2019. Anti-money laundering in
bitcoin: Experimenting with graph convolutional networks for financial forensics.
arXiv preprint arXiv:1908.02591.

Wei, Xiaokai, Xie, Sihong, and Yu, Philip S. 2015. Efficient partial order preserving
unsupervised feature selection on networks. Pages 82–90 of: Proceedings of the
2015 SIAM International Conference on Data Mining. SIAM.

Wei, Xiaokai, Cao, Bokai, and Philip, S Yu. 2016. Unsupervised feature selection on
networks: a generative view. In: Thirtieth AAAI Conference on Artificial Intelli-
gence.

Weisfeiler, B, and Leman, A. The reduction of a graph to canonical form and the
algebgra which appears therein.

Welbl, Johannes, Stenetorp, Pontus, and Riedel, Sebastian. 2018. Constructing datasets
for multi-hop reading comprehension across documents. Transactions of the As-
sociation for Computational Linguistics, 6, 287–302.

Wen, Yu-Hui, Gao, Lin, Fu, Hongbo, Zhang, Fang-Lue, and Xia, Shihong. 2019. Graph
CNNs with motif and variable temporal block for skeleton-based action recog-
nition. Pages 8989–8996 of: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33.

Werbos, Paul John. 1994. The roots of backpropagation: from ordered derivatives to
neural networks and political forecasting. Vol. 1. John Wiley & Sons.

Werling, Donna M, and Geschwind, Daniel H. 2013. Sex differences in autism spectrum
disorders. Current opinion in neurology, 26(2), 146.

Widder, David Vernon, and Hirschman, Isidore Isaac. 2015. Convolution Transform.
Vol. 2153. Princeton University Press.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 309

Wu, Huijun, Wang, Chen, Tyshetskiy, Yuriy, Docherty, Andrew, Lu, Kai, and Zhu,
Liming. 2019. Adversarial Examples for Graph Data: Deep Insights into At-
tack and Defense. Pages 4816–4823 of: Kraus, Sarit (ed), Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019. ijcai.org.

Wu, Zonghan, Pan, Shirui, Chen, Fengwen, Long, Guodong, Zhang, Chengqi, and
Philip, S Yu. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems.

Xu, Bingbing, Shen, Huawei, Cao, Qi, Qiu, Yunqi, and Cheng, Xueqi. 2019a. Graph
Wavelet Neural Network. arXiv preprint arXiv:1904.07785.

Xu, Han, Ma, Yao, Liu, Haochen, Deb, Debayan, Liu, Hui, Tang, Jiliang, and Jain, Anil.
2019b. Adversarial attacks and defenses in images, graphs and text: A review.
arXiv preprint arXiv:1909.08072.

Xu, Jian. 2017. Representing Big Data as Networks: New Methods and Insights. arXiv
preprint arXiv:1712.09648.

Xu, Kaidi, Chen, Hongge, Liu, Sijia, Chen, Pin-Yu, Weng, Tsui-Wei, Hong, Mingyi,
and Lin, Xue. 2019c. Topology Attack and Defense for Graph Neural Networks:
An Optimization Perspective. Pages 3961–3967 of: Kraus, Sarit (ed), Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJ-
CAI 2019, Macao, China, August 10-16, 2019. ijcai.org.

Xu, Keyulu, Li, Chengtao, Tian, Yonglong, Sonobe, Tomohiro, Kawarabayashi, Ken-
ichi, and Jegelka, Stefanie. 2018a. Representation Learning on Graphs with Jump-
ing Knowledge Networks. Pages 5449–5458 of: Dy, Jennifer G., and Krause, An-
dreas (eds), Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Pro-
ceedings of Machine Learning Research, vol. 80. PMLR.

Xu, Keyulu, Hu, Weihua, Leskovec, Jure, and Jegelka, Stefanie. 2019d. How Powerful
are Graph Neural Networks? In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Xu, Kun, Wu, Lingfei, Wang, Zhiguo, Feng, Yansong, Witbrock, Michael, and Sheinin,
Vadim. 2018b. Graph2seq: Graph to sequence learning with attention-based neu-
ral networks. arXiv preprint arXiv:1804.00823.

Xu, Kun, Wang, Liwei, Yu, Mo, Feng, Yansong, Song, Yan, Wang, Zhiguo, and Yu,
Dong. 2019e. Cross-lingual Knowledge Graph Alignment via Graph Matching
Neural Network. arXiv preprint arXiv:1905.11605.

Xuan, Ping, Pan, Shuxiang, Zhang, Tiangang, Liu, Yong, and Sun, Hao. 2019. Graph
convolutional network and convolutional neural network based method for pre-
dicting lncRNA-disease associations. Cells, 8(9), 1012.

Yadati, Naganand, Nimishakavi, Madhav, Yadav, Prateek, Nitin, Vikram, Louis, Anand,
and Talukdar, Partha. 2019. HyperGCN: A New Method For Training Graph Con-
volutional Networks on Hypergraphs. Pages 1509–1520 of: Advances in Neural
Information Processing Systems.

Yan, Sijie, Xiong, Yuanjun, and Lin, Dahua. 2018. Spatial temporal graph convolu-
tional networks for skeleton-based action recognition. In: Thirty-Second AAAI
Conference on Artificial Intelligence.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

310 Bibliography

Yanardag, Pinar, and Vishwanathan, SVN. 2015. Deep graph kernels. Pages 1365–
1374 of: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

Yang, Bishan, Yih, Wen-tau, He, Xiaodong, Gao, Jianfeng, and Deng, Li. 2014. Learn-
ing multi-relational semantics using neural-embedding models. arXiv preprint
arXiv:1411.4072.

Yang, Jaewon, and Leskovec, Jure. 2015. Defining and evaluating network communities
based on ground-truth. Knowledge and Information Systems, 42(1), 181–213.

Yang, Xu, Tang, Kaihua, Zhang, Hanwang, and Cai, Jianfei. 2019. Auto-encoding
scene graphs for image captioning. Pages 10685–10694 of: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

Yao, Liang, Mao, Chengsheng, and Luo, Yuan. 2019. Graph convolutional networks
for text classification. Pages 7370–7377 of: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33.

Ying, Rex, He, Ruining, Chen, Kaifeng, Eksombatchai, Pong, Hamilton, William L,
and Leskovec, Jure. 2018a. Graph convolutional neural networks for web-scale
recommender systems. Pages 974–983 of: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

Ying, Rex, He, Ruining, Chen, Kaifeng, Eksombatchai, Pong, Hamilton, William L,
and Leskovec, Jure. 2018b. Graph convolutional neural networks for web-scale
recommender systems. Pages 974–983 of: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM.

Ying, Zhitao, You, Jiaxuan, Morris, Christopher, Ren, Xiang, Hamilton, Will, and
Leskovec, Jure. 2018c. Hierarchical graph representation learning with differen-
tiable pooling. Pages 4800–4810 of: Advances in Neural Information Processing
Systems.

Ying, Zhitao, Bourgeois, Dylan, You, Jiaxuan, Zitnik, Marinka, and Leskovec, Jure.
2019. Gnnexplainer: Generating explanations for graph neural networks. Pages
9244–9255 of: Advances in neural information processing systems.

You, Jiaxuan, Liu, Bowen, Ying, Zhitao, Pande, Vijay, and Leskovec, Jure. 2018a.
Graph convolutional policy network for goal-directed molecular graph genera-
tion. Pages 6410–6421 of: Advances in neural information processing systems.

You, Jiaxuan, Ying, Rex, Ren, Xiang, Hamilton, William L, and Leskovec, Jure. 2018b.
Graphrnn: Generating realistic graphs with deep auto-regressive models. arXiv
preprint arXiv:1802.08773.

You, Yuning, Chen, Tianlong, Wang, Zhangyang, and Shen, Yang. 2020. When
Does Self-Supervision Help Graph Convolutional Networks? arXiv preprint
arXiv:2006.09136.

Yu, Bing, Yin, Haoteng, and Zhu, Zhanxing. 2017. Spatio-temporal graph convolu-
tional networks: A deep learning framework for traffic forecasting. arXiv preprint
arXiv:1709.04875.

Yu, Dong, and Deng, Li. 2016. AUTOMATIC SPEECH RECOGNITION. Springer.
Yuan, Hao, and Ji, Shuiwang. 2019. StructPool: Structured graph pooling via condi-

tional random fields. In: International Conference on Learning Representations.
Yuan, Hao, Tang, Jiliang, Hu, Xia, and Ji, Shuiwang. 2020. XGNN: Towards Model-

Level Explanations of Graph Neural Networks. arXiv preprint arXiv:2006.02587.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

Bibliography 311

Yuan, Shuhan, Wu, Xintao, and Xiang, Yang. 2017. SNE: signed network embedding.
Pages 183–195 of: Pacific-Asia conference on knowledge discovery and data min-
ing. Springer.

Yuan, Xiaoyong, He, Pan, Zhu, Qile, and Li, Xiaolin. 2019. Adversarial examples:
Attacks and defenses for deep learning. IEEE transactions on neural networks
and learning systems, 30(9), 2805–2824.

Zeiler, Matthew D. 2012. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701.

Zeng, Hanqing, Zhou, Hongkuan, Srivastava, Ajitesh, Kannan, Rajgopal, and Prasanna,
Viktor. 2019. Graphsaint: Graph sampling based inductive learning method. arXiv
preprint arXiv:1907.04931.

Zhang, Chuxu, Song, Dongjin, Huang, Chao, Swami, Ananthram, and Chawla,
Nitesh V. 2019a. Heterogeneous graph neural network. Pages 793–803 of: Pro-
ceedings of the 25th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining.

Zhang, Fanjin, Liu, Xiao, Tang, Jie, Dong, Yuxiao, Yao, Peiran, Zhang, Jie, Gu, Xiao-
tao, Wang, Yan, Shao, Bin, Li, Rui, et al. 2019b. Oag: Toward linking large-scale
heterogeneous entity graphs. Pages 2585–2595 of: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining.

Zhang, Guo, He, Hao, and Katabi, Dina. 2019c. Circuit-GNN: Graph neural networks
for distributed circuit design. Pages 7364–7373 of: International Conference on
Machine Learning.

Zhang, Jiani, Shi, Xingjian, Xie, Junyuan, Ma, Hao, King, Irwin, and Yeung, Dit-Yan.
2018a. Gaan: Gated attention networks for learning on large and spatiotemporal
graphs. arXiv preprint arXiv:1803.07294.

Zhang, Ningyu, Deng, Shumin, Sun, Zhanlin, Wang, Guanying, Chen, Xi, Zhang, Wei,
and Chen, Huajun. 2019d. Long-tail Relation Extraction via Knowledge Graph
Embeddings and Graph Convolution Networks. arXiv preprint arXiv:1903.01306.

Zhang, Wei Emma, Sheng, Quan Z, Alhazmi, Ahoud, and Li, Chenliang. 2020. Adver-
sarial attacks on deep-learning models in natural language processing: A survey.
ACM Transactions on Intelligent Systems and Technology (TIST), 11(3), 1–41.

Zhang, Yizhou, Xiong, Yun, Kong, Xiangnan, Li, Shanshan, Mi, Jinhong, and Zhu,
Yangyong. 2018b. Deep collective classification in heterogeneous information
networks. Pages 399–408 of: Proceedings of the 2018 World Wide Web Confer-
ence.

Zhang, Yuhao, Qi, Peng, and Manning, Christopher D. 2018c. Graph Convolution over
Pruned Dependency Trees Improves Relation Extraction. Pages 2205–2215 of:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing.

Zhao, Lingxiao, and Akoglu, Leman. 2019. PairNorm: Tackling Oversmoothing in
GNNs. arXiv preprint arXiv:1909.12223.

Zhou, Jie, Cui, Ganqu, Zhang, Zhengyan, Yang, Cheng, Liu, Zhiyuan, Wang, Lifeng,
Li, Changcheng, and Sun, Maosong. 2018a. Graph neural networks: A review of
methods and applications. arXiv preprint arXiv:1812.08434.

Zhou, Lekui, Yang, Yang, Ren, Xiang, Wu, Fei, and Zhuang, Yueting. 2018b. Dynamic
network embedding by modeling triadic closure process. In: Thirty-Second AAAI
Conference on Artificial Intelligence.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

312 Bibliography

Zhou, Yaqin, Liu, Shangqing, Siow, Jingkai, Du, Xiaoning, and Liu, Yang. 2019. De-
vign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. Pages 10197–10207 of: Advances in Neural
Information Processing Systems.

Zhu, Dingyuan, Zhang, Ziwei, Cui, Peng, and Zhu, Wenwu. 2019a. Robust graph con-
volutional networks against adversarial attacks. Pages 1399–1407 of: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining.

Zhu, Hao, Lin, Yankai, Liu, Zhiyuan, Fu, Jie, Chua, Tat-seng, and Sun, Maosong.
2019b. Graph Neural Networks with Generated Parameters for Relation Extrac-
tion. arXiv preprint arXiv:1902.00756.

Zhu, Rong, Zhao, Kun, Yang, Hongxia, Lin, Wei, Zhou, Chang, Ai, Baole, Li, Yong,
and Zhou, Jingren. 2019c. Aligraph: A comprehensive graph neural network plat-
form. arXiv preprint arXiv:1902.08730.

Zhu, Shenghuo, Yu, Kai, Chi, Yun, and Gong, Yihong. 2007. Combining content and
link for classification using matrix factorization. Pages 487–494 of: Proceedings
of the 30th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval.

Zhu, Xiaojin, Ghahramani, Zoubin, and Lafferty, John D. 2003. Semi-supervised learn-
ing using gaussian fields and harmonic functions. Pages 912–919 of: Proceedings
of the 20th International conference on Machine learning (ICML-03).

Zitnik, Marinka, Agrawal, Monica, and Leskovec, Jure. 2018. Modeling polypharmacy
side effects with graph convolutional networks. Bioinformatics, 34(13), i457–
i466.

Zügner, Daniel, and Günnemann, Stephan. 2019. Adversarial attacks on graph neural
networks via meta learning. arXiv preprint arXiv:1902.08412.

Zügner, Daniel, Akbarnejad, Amir, and Günnemann, Stephan. 2018. Adversarial at-
tacks on neural networks for graph data. Pages 2847–2856 of: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining.

Book Website:https://yaoma24.github.io/dlg_book/

https://yaoma24.github.io/dlg_book/

