Contents

1	Deep	• Learning on Graphs: An Introduction	page 1	
	1.1	Introduction	1	
	1.2	Why Deep Learning on Graphs?	1	
	1.3	What Content is Covered?	3	
	1.4	.4 Who Should Read the Book?		
	1.5	Feature Learning on Graphs: A Brief History	8	
		1.5.1 Feature Selection on Graphs	9	
		1.5.2 Representation Learning on Graphs	10	
	1.6	Conclusion	12	
	1.7	Further Reading	13	
	PAR	T ONE FOUNDATIONS	15	
2	Four	ndations of Graphs	17	
	2.1	Introduction	17	
	2.2	Graph Representations	18	
	2.3	Properties and Measures	19	
		2.3.1 Degree	19	
		2.3.2 Connectivity	21	
		2.3.3 Centrality	23	
	2.4	Spectral Graph Theory	26	
		2.4.1 Laplacian Matrix	26	
		2.4.2 The Eigenvalues and Eigenvectors of the		
		Laplacian Matrix	28	
	2.5	Graph Signal Processing	29	
		2.5.1 Graph Fourier Transform	30	
	2.6	Complex Graphs	33	

iii

Contents

	2.6.1	Heterogeneous Graphs	33
	2.6.2	Bipartite Graphs	33
	2.6.3	Multi-dimensional Graphs	34
	2.6.4	Signed Graphs	35
	2.6.5	Hypergraphs	36
	2.6.6	Dynamic Graphs	37
2.7	Comp	utational Tasks on Graphs	39
	2.7.1	Node-focused Tasks	39
	2.7.2	Graph-focused Tasks	41
2.8	Conclu	usion	42
2.9	Furthe	r Reading	42
Four	dations	of Deep Learning	43
3.1	Introdu	uction	43
3.2	Feedfo	orward Networks	44
	3.2.1	The Architecture	46
	3.2.2	Activation Functions	47
	3.2.3	Output Layer and Loss Function	50
3.3	Convo	lutional Neural Networks	51
	3.3.1	The Convolution Operation and Convolutional	
		Layer	52
	3.3.2	Convolutional Layers in Practice	56
	3.3.3	Non-linear Activation Layer	57
	3.3.4	Pooling Layer	58
	3.3.5	An Overall CNN Framework	58
3.4	Recuri	rent Neural Networks	59
	3.4.1	The Architecture of Traditional RNNs	60
	3.4.2	Long Short-Term Memory	61
	3.4.3	Gated Recurrent Unit	63
3.5	Autoer	ncoders	63
	3.5.1	Undercomplete Autoencoders	65
	3.5.2	Regularized Autoencoders	66
3.6	Trainii	ng Deep Neural Networks	67
	3.6.1	Training with Gradient Descent	67
	3.6.2	Backpropagation	68
	3.6.3	Preventing Overfitting	70
3.7	Conclu	usion	71
3.8	Furthe	r Reading	72

iv

3

			Contents	v
	PAR	т тwo	METHODS	73
4	Gra	oh Embe	edding	75
	4.1	Introdu	uction	75
	4.2	Graph	Embedding on Simple Graphs	77
		4.2.1	Preserving Node Co-occurrence	77
		4.2.2	Preserving Structural Role	86
		4.2.3	Preserving Node Status	89
		4.2.4	Preserving Community Structure	91
	4.3	Graph	Embedding on Complex Graphs	93
		4.3.1	Heterogeneous Graph Embedding	94
		4.3.2	Bipartite Graph Embedding	96
		4.3.3	Multi-dimensional Graph Embedding	97
		4.3.4	Signed Graph Embedding	98
		4.3.5	Hypergraph Embedding	101
		4.3.6	Dynamic Graph Embedding	103
	4.4	Conclu	ision	104
	4.5	Furthe	r Reading	105
5	Grap	oh Neura	al Networks	106
	5.1	Introdu	action	106
	5.2	The G	eneral GNN Frameworks	108
		5.2.1	A General Framework for Node-focused Tasks	108
		5.2.2	A General Framework for Graph-focused Tasks	109
	5.3	Graph	Filters	111
		5.3.1	Spectral-based Graph Filters	111
		5.3.2	Spatial-based Graph Filters	121
	5.4	Graph	Pooling	127
		5.4.1	Flat Graph Pooling	128
		5.4.2	Hierarchical Graph Pooling	129
	5.5	Parame	eter Learning for Graph Neural Networks	133
		5.5.1	Parameter Learning for Node Classification	133
		5.5.2	Parameter Learning for Graph Classification	134
	5.6	Conclu	ision	135
	5.7	Furthe	r Reading	136
6	Robi	ıst Grap	h Neural Networks	137
	6.1	Introdu	action	137
	6.2	Graph	Adversarial Attacks	137
		6.2.1	Taxonomy of Graph Adversarial Attacks	138
		6.2.2	White-box Attack	140
		6.2.3	Gray-box Attack	143

Contents

		6.2.4	Black-box Attack	147
	6.3	Graph	Adversarial Defenses	150
		6.3.1	Graph Adversarial Training	151
		6.3.2	Graph Purification	153
		6.3.3	Graph Attention	154
		6.3.4	Graph Structure Learning	158
	6.4	Conclu	ision	159
	6.5	Further	r Reading	159
7	Scala	ble Gra	ph Neural Networks	160
	7.1	Introdu	action	160
	7.2	Node-v	wise Sampling Methods	164
	7.3	Layer-	wise Sampling Methods	166
	7.4	Subgra	ph-wise Sampling Methods	170
	7.5	Conclu	ision	172
	7.6	Further	r Reading	172
8	Grap	oh Neura	al Networks on Complex Graphs	174
	8.1	Introdu	iction	174
	8.2	Hetero	geneous Graph Neural Networks	174
	8.3	Biparti	te Graph Neural Networks	176
	8.4	Multi-o	dimensional Graph Neural Networks	177
	8.5	Signed	Graph Neural Networks	179
	8.6	Hyperg	graph Neural Networks	182
	8.7	Dynam	nic Graph Neural Networks	183
	8.8	Conclu	ision	185
	8.9	Further	r Reading	185
9	Beyo	nd GNN	s: More Deep Models on Graphs	186
	9.1	Introdu	action	186
	9.2	Autoer	coders on Graphs	187
	9.3	Recurr	ent Neural Networks on Graphs	189
	9.4	Variati	onal Autoencoders on Graphs	191
		9.4.1	Variational Autoencoders for Node Represen-	
			tation Learning	193
		9.4.2	Variational Autoencoders for Graph Generation	193
	9.5	Genera	ative Adversarial Networks on Graphs	196
		9.5.1	Generative Adversarial Networks for Node	
			Representation Learning	197
		9.5.2	Generative Adversarial Networks for Graph	
			Generation	199
	9.6	Conclu	ision	200

vi

		Contents	vii
9.7	Further Reading		200

	DAD		202
•	PAR	THREE APPLICATIONS	203
0	Grap	h Neural Networks in Natural Language Processing	205
	10.1	Introduction	205
	10.2	Semantic Role Labeling	206
	10.3	Neural Machine Translation	208
	10.4	Relation Extraction	209
	10.5	Question Answering	210
		10.5.1 The Multi-hop QA Task	211
	10.6	10.5.2 Entity-GCN	212
	10.6	Graph to Sequence Learning	214
	10.7	Graph Neural Networks on Knowledge Graphs	215
		10.7.1 Graph Filters for Knowledge Graphs	216
		10.7.2 Transforming Knowledge Graphs to Simple	
		Graphs	217
		10.7.3 Knowledge Graph Completion	217
	10.8	Conclusion	218
	10.9	Further Reading	218
	Grap	h Neural Networks in Computer Vision	220
	11.1	Introduction	220
	11.2	Visual Question Answering	220
		11.2.1 Images as Graphs	221
		11.2.2 Images and Questions as Graphs	223
	11.3	Skeleton-based Action Recognition	225
	11.4	Image Classification	227
		11.4.1 Zero-shot Image Classification	228
		11.4.2 Few-shot Image Classification	229
		11.4.3 Multi-label Image Classification	230
	11.5	Point Cloud Learning	231
	11.6	Conclusion	232
	11.7	Further Reading	232
	Grap	h Neural Networks in Data Mining	233
	12.1	Introduction	233
	12.2	Web Data Mining	233
		12.2.1 Social Network Analysis	234
		12.2.2 Recommender Systems	237
	12.3	Urban Data Mining	241

Contents

		12.3.1 Traffic Prediction	241
		12.3.2 Air Quality Forecasting	243
	12.4	Cybersecurity Data Mining	244
		12.4.1 Malicious Account Detection	244
		12.4.2 Fake News Detection	246
	12.5	Conclusion	247
	12.6	Further Reading	247
13	Grap	h Neural Networks in Biochemistry and Healthcare	249
	13.1	Introduction	249
	13.2	Drug Development and Discovery	249
		13.2.1 Molecule Representation Learning	250
		13.2.2 Protein Interface Prediction	251
		13.2.3 Drug-Target Binding Affinity Prediction	253
	13.3	Drug Similarity Integration	255
	13.4	Polypharmacy Side Effect Prediction	256
	13.5	Disease Prediction	259
	13.6	Conclusion	260
	13.7	Further Reading	261

	PAR	ΓFOUR ADVANCES	263
14	Adva	nced Topics in Graph Neural Networks	265
	14.1	Introduction	265
	14.2	Deeper Graph Neural Networks	266
		14.2.1 Jumping Knowledge	268
		14.2.2 DropEdge	268
		14.2.3 Pairnorm	268
	14.3	Exploring Unlabeled Data via Self-supervised Learning	268
		14.3.1 Node-focused Tasks	269
		14.3.2 Graph-focused Tasks	272
	14.4	Expressiveness of Graph Neural Networks	273
		14.4.1 Weisfeiler-Lehman Test	274
		14.4.2 Expressiveness	275
	14.5	Conclusion	277
	14.6	Further Reading	277
15	Adva	nced Applications in Graph Neural Networks	278
	15.1	Introduction	278
	15.2	Combinatorial Optimization on Graphs	278
	15.3	Learning Program Representations	280

viii

	Contents	ix
15.4	Reasoning Interacting Dynamical Systems in Physics	282
15.5	Conclusion	283
15.6	Further Reading	283
Bibliography		
Index		